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Experiment!

Make it your motto day and night.
Experiment,

And it will lead you to the light.

The apple on the top of the tree
Is never too high to achieve,
So take an example from Eve...
' Experiment!

Be curious,

Though interfering friends may frown.
Get furious

At each attempt to hold you down.

If this advice you only employ,
The future can offer you infinite joy
And merriment ...
Experiment
And you’ll see!

CoLE PORTER*

*“EXPERIMENT" from “NYMPH ERRANT,” c. & a. Cole Porter. Copyright @ 1933 larms Inc.
Reproduced by kind permission of CHAPPELL & COMPANY LIMITED for the territory of
World (ex. U.S.A., Canada and Scandinavia). © 1933 WARNER BROS. INC. Copyright Renewed.
All Rights Reserved. Used by permission.



When the Lord created the world and people to live in it—an enterprise which,
according to modern science, took a very long time—I could well imagine that He
reasoned with Himself as follows: “If I make everything predictable, these human
beings, whom I have endowed with pretty good brains, will undoubtedly leam_
to predict everything, and they will thereupon have no motive to do anything at
all, because they will recognize that the future is totally determined and cannot
be influenced by any human action. On the other hand, if I make everything
unpredictable, they will gradually discover that there is no rational basis for any
decision whatsoever and, as in the first case, they will thereupon have no motive
to do anything at all. Neither scheme would make sense. I must therefore create a
mixture of the two. Let some things be predictable and let others be unpredictable.
They will then, amongst many other things, have the very important task of
finding out which is which.”

E. F. SCHUMACHER*

* From Small Is Beautiful. Used by permission
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Preface to the Second Edition

In rewriting this book, we have deeply felt the loss of our dear friend and col-
league Bill Hunter (William G. Hunter, 1937-1986). We miss his ideas, his
counsel, and his cheerful encouragement. We believe, however, that his spirit
has been with us and that he would be pleased with what we have done.

The objectives for this revised edition of Statistics for Experimenters remain
the same as those for the first:

1. To make available to experimenters scientific and statistical tools that can
greatly catalyze innovation, problem solving, and discovery.

2. To illustrate how these tools may be used by and with subject matter
specialists as their investigations proceed.

Developments that would have delighted Bill are the receptive atmosphere
these techniques now encounter in industry and the present universal availability
of very fast computers, allowing* where necessary, the ready use of computa-
tionally intensive methods.

Under such banners as “Six Sigma,” management has realized the impor-
tance of training its work forces in the arts of economic investigation. With this
democratization of the scientific method, many more people are being found with
creative ability and unrealized aptitude for problem solving and discovery. Also,
the “team idea” not only accelerates improvement but identifies such natural lead-
ers of innovation and can allow them to lead. To make such initiatives possible
the modern philosophy and methods of process improvement must be taught at
all levels of an organization. We believe both trainers and trainees engaged in
such efforts will find this book helpful. Also based on a long experience, we

*All the computations in this book can be done with the statistical language R (R Devclopment
Core Team, 2004), available at CRAN (http://cran.R-project.org). Functions for displaying anova and
lambda plots, for Bayesian screening and model building are included in the BHH2 and BsMD R-
Packages and available at CRAN under contributed packages. There is as well commercial sofiware,
such as the SCA Statistical System, which some readers will find easier to use.
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believe the material in this book provides appropriate training for scientists and
engineers at universities whose needs have in the past been frequently neglected.

The material of the original book has been rearranged and largely rewritten
with the object of ensuring even greater accessibility to its users. In addition, a
number of new things have been introduced or emphasized:

The many issues, in addition to statistical considerations, that must be atiended
to in a successful investigation.

The need to work closely with subject matter specialists..

The importance of choosing a relevant reference set.

The value of graphical techniques as an adjunct to more formal methods.

The use of inactive factor and canonical spaces to solve multiple response
problems.

The greatly increased efficiency sometimes achievable by data transformation
using “lambda plots.”

The understanding of error transmission and its use in designing products
and processess that are least affected by (robust to) variation in system
components.

The value of split plot and similar arrangements in industrial experimentation
particularly in the design of environmentally robust products and processes.

The value of a sequential approach to problem solving and in particular the
sequential assembly of experimental designs.

How to choose the best follow-up runs.

The acquiring of investigational technique by hands-on design of some simple
device (e.g., a paper helicopter).

How empiricism can lead to mechanism.

The use of randomization and blocking to allow analysis “as if” standard
assumptions were true.

The use of complex experimental arrangements, in particular Plackett Burman
designs and their analysis.

The design information function.
An introduction to process control, to forecasting, and to time series analysis.
A fuller discussion of evolutionary process operation.

USING THE QUESTIONS AND PROBLEMS

The questions and problems at the end of each chapter can be used in two ways.
You can consider them for review before reading the chapter to help identify
key points and to guide your reading and you can consider them for practice and
exercise after reading this chapter. You may also find helpful the collection of
quotes on the inside covers of this book.
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As you apply these ideas and especially if you meet with unusual success or
failure, we shall be interested to learn of your experiences. We have tried to write
a book that is useful and clear. If you have any suggestions as to how it can be
improved, please write us.
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Valverde Ventuara, Carla Vivacqua and Carmen Paniagua Quifiones for their
help. We are indebted to David Bacon Mac Berthouex, Sgren Bisgaard, Bob
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CHAPTERI

Catalyzing the Generation
of Knowledge

1.1. THE LEARNING PROCESS

Knowledge is power. It is the key to innovation and profit. But the getting of
new knowledge can be complex, time consuming, and costly. To be successful in
such an enterprise, you must learn about learning. Such a concept is not esoteric.
It is the key to idea generation, to process improvement, to the development of
new and robust products and processes. By using this book you can greatly sim-
plify and accelerate the generation, testing, and development of new ideas. You
will find that statistical methods and particularly experimental design catalyze
scientific method and greatly increase its efficiency.

Learning is advanced by the iteration illustrated in Figure 1.1. An initial idea
(or model or hypothesis or theory or conjecture) leads by a process of deduction
to certain necessary consequences that may be compared with data. When con-
sequences and data fail to agree, the discrepancy can lead, by a process called
induction, to modification of the model. A second cycle in the iteration may thus
be initiated. The consequences of the modified model are worked out and again
compared with data (old or newly acquired), which in turn can lead to further
modification and gain of knowledge. The data acquiring process may be scientific
experimentation, but it could be a walk to the library or a browse on the Internet.

Inductive-Deductive Learning: An Everyday Experience

The iterative inductive—deductive process, which is geared to the structure of the
human brain and has been known since the time of Aristotle, is part of one's
everyday experience. For example, a chemical engineer Peter Minerex* parks

*Can you guess why he's called Peter Minerex?

—

S’alislfcs Jor Experimenters, Second Edition. By G. E. P. Box, J. S. Hunter, and W. G. Hunter
Copyright ® 2005 John Wiley & Sons, Inc.
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Data (facts, phenomena)

2 VNA

Deduction Induction Deduction Induction

R e

Idea (model, hypothesis, theory, conjecture)

Figure 1.1. lterative leaming process.

his car every morning in an allocated parking space. One afternoon after leaving
work he is led to follow the following deductive—inductive learning sequence:

Model: Today is like every day.

Deduction: My car will be in its parking place.
Data: 1t isn’t.

Induction: Someone must have taken it.

Model: My car has been stolen.

Deduction: My car will not be in the parking lot
Data: No. It’s over there!

Induction: Someone took it and brought it back.

Model: A thief took it and brought it back.
Deduction: My car will have been broken into.
Data: 1t's unharmed and unlocked.

Induction: Someone who had a key took it.

Model: My wife used my car.
Deduction: She probably left a note.
Data: Yes. Here it is.

Suppose you want to solve a particular problem and initial speculation pro-
duces some relevant idea. You will then seek data to further support or refute this
theory. This could consist of some of the following: a search of your files and
of the Web, a walk to the library, a brainstorming meeting with co-workers and
executives, passive observation of a process, or active experimentation. In any
case, the facts and data gathered sometimes confirm your conjecture, in which
case you may have solved your problem. Often, however, it appears that your
initial idea is only partly right or perhaps totally wrong. In the latter two cases,
the difference between deduction and actuality causes you to keep digging. This
can point to a modified or totally different idea and to the reanalysis of your
present data or to the generation of new data.
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Humans have a two-sided brain specifically designed to carry out such con-
tinuing deductive—inductive conversations. While this iterative process can lead
to a solution of a problem, you should not expect the nature of the solution, or
the route by which it is reached, to be unique.

Chemical Example
Rita Stoveing,* a chemist, had the following idea:

Model

Deduction

Data

Induction

Model
Deduction

Data

Induction

Because of certain properties of a newly discovered catalyst, its

presence in a particular reaction mixture would probably cause
chemical A to combine with chemical B to form, in high
yield, a valuable product C.

Rita has a tentative hypothesis and deduces its consequences but

has no data to verify or deny its truth. So far as she can tell
from conversations with colleagues, careful examination of the
literature, and further searches on the computer, no one has
ever performed the operation in question. She therefore decides
she should run some appropriate experiments. Using her
knowledge of chemistry, she makes an experimental run at
carefully selected reaction conditions. In particular, she guesses
that a temperature of 600°C would be worth trying.

The result of the first experiment is disappointing. The desired

product C is a colorless, odorless liquid, but what is obtained
is a black tarry product containing less than 1% of the desired
substance C.

At this point the initial model and data do not agree. The

problem worries Rita and that evening she is somewhat short
with her husband, Peter Minerex, but the next morning in the
shower she begins to think along the following lines. Product
C might first have been formed in high yield, but it could then
have been decomposed.

Theory suggests the reaction conditions were too severe.
A lower temperature might produce a satisfactory yield of C.

Two further runs are made with the reaction temperature first
reduced to 550°C and then to 500°C.

The product obtained from both runs is less tarry and not so

black. The run at 550°C yields 4% of the desired product C,
and the run at 500°C yields 17%

Given these data and her knowledge of the theory of such

reactions, she decides she should experiment further not only
with temperature but also with a number of other factors (e.g..
concentration, reaction time, catalyst charge) and to study
other characteristics of the product (e.g., the levels of various
impurities, viscosity).

*Can you guess why she's called Rita Stoveing?
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To evaluate such complex systems economically, she will need to employ
designed experiments and statistical analysis. Later in this book you will see
how subsequent investigation might proceed using statistical tools.

Exercise 1.1. Describe a real or imagined example of iterative learning from your
own fieJd—engineering, agriculture, biology, genomics, education, medicine,
psychology, and so on.

A Feedback Loop

In Figure 1.2 the deductive—inductive iteration is shown as a process of feed-
back. An initial idea (hypothesis, model) is represented by M| on the left of the
diagram. By deduction you consider the expected consequences of M;—what
might happen if M, is true and what might happen if M, is false. You also
deduce what data you will need to explore M,. The experimental plan (design)
you decide on is represented here by a frame through which some aspects of the
true state of nature are seen. Remember that when you run an experiment the
frame is at your choice™* (that’s your hand holding the frame). The data produced
represent some aspect (though not always a relevant one) of the true state of
nature obscured to a greater or lesser extent by “noise,” that is, by experimental
error. The analyzed data may be compared with the expected (deduced) conse-
quences of M,. If they agree, your problem may be solved. If they disagree, the
way they disagree can allow you to see how your initial idea M| may need to be

True
state
of
nature

O
o0
Model M; p, «———— Induction «—Y 2 < Analysis with
~ 2 MMy, My, ...7)
ducﬁo”

\-\ Consequences
of M‘

Figure 1.2, Itcrative problem solving seen as a feedback loop.

*This is not true, of course, for happenstance data over which you have no control.
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modified. Using the same data, you may consider alternative analyses and also
possible modifications of the original model M), M s+ ltmay become clear
that your original idea is wrong or at least needs to be considerably modified. A
new model M> may now be postulated. This may require you to choose. a new
or augmented experimental design to illuminate addition.al and possibl)‘( different
aspects of the state of nature. This could Iead to a satisfactory solution of the

problem or, alternatively, provide clues indicating how best to proceed.

1.2. IMPORTANT CONSIDERATIONS

Subject Matter Knowledge

Notice the importance of subject matter knowledge to perceive and explore ten-
tative models and to know where to look for help.

The Route to Problem Solving Is Not Unique

When he first noticed that his car was missing, Peter Minerex might easily have
behaved differently. For example, he might immediately have phoned the police
and thus initiated different (but perhaps not equally effective) routes to discovery.
Similarly, in the chemical investigation a different experimenter, after studying
the disappointing results, might have decided to explore an entirely different
chemical route to obtain the desired product. The object is to converge to a
satisfactory solution—the starting point and the route (and sometimes the nature
of the solution) will be different for different investigators.

The game of 20 Questions illustrates these points. In the game the object is
to identify an unknown object using no more than 20 questions, each of which
has only one of two distinct answers. Suppose that the object to be guessed
is Abraham Lincoln’s stove pipe hat. The initial clue is vegetable with animal
associations. For a competent team of players presented with this initial clue the
game might go as follows:

TEAM A

Question Answer

Are the animal associations human? Yes

Male or female? Male
Famous or not? Famous
Connected with the arts No
Politician? Yes.

USA or other? USA

This century or not? Not
Nineteenth or eighteenth century? Ninetcenth
Connected with the Civil War? Yes
Lincoln? Yes

Is the object Lincoln’s hat? Yes.
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But for a different team of competent players the game would almost certainly
follow a different route. For example:

TEAM B

Question Answer
Is the object useful? Yes

Is it an item of dress? Yes
Male of female? Male
Worn above or below the belt? Above
Worn on the head or not? Head

Is it a famous hat? Yes
Winston Churchill’s hat? No
Abraham Lincoln’s hat? Yes

The game follows the iterative pattern of Figures 1.1 and 1.2, where the “design”
is the choice of question. At each stage conjecture, progressively refined, leads to
an appropriate choice of a question that elicits the new data, which leads in turn
to appropriate modification of the conjecture. Teams A and B followed different
routes, but each was led to the correct answer because the data were generated
by the truth.

The qualities needed to play this game are (a) subject matter knowledge and
(b) knowledge of strategy. Concerning strategy, it is well known that at each
stage a question should be asked that divides the objects not previously elim-
inated into approximately equiprobable halves. In these examples the players
usually try to do this with questions such as “male or female?” or “worn above
or below the belt?”*

Knowledge of strategy parallels knowledge of statistical methods in scientific
investigation. Notice that without knowledge of strategy you can always play the
game, although perhaps not very well, whereas without subject matter knowl-
edge it cannot be played at all. However, it is by far best to use both subject
matter knowledge and strategy. It is possible to conduct an investigation without
statistics but impossible to do so without subject matter knowledge. However,
by using statistical methods convergence to a solution is speeded and a good
investigator becomes an even better one.

1.3. THE EXPERIMENTER’S PROBLEM AND STATISTICAL
METHODS

Three problems that confront the investigator are complexity, experimental error,
and the difference between correlation and causation.

* From a dictionary containing a million words a single ward can be found playing 20 Questions..
The questions begin, *Is it in the front half or the back half of the dictionary?” If the answer is, say,
*“The front half," then ihe next question is, *1s it in the frant half or the back half of that half?” And
s0 on. Note that 220 > 105,
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Complexity

In experimentation for process improvement* and discovery it i§ usually neces-
sary to consider simultaneously the influence of a number of “input varlflblcs”
such as temperature, feed rate, concentration, and catalyst on a collection of
output variables such as yield, impurity, and cost. We call controllable input
variables factors and output variables. responses: In studying the question as to
how fo improve a process the prime question is,

“What does what to what?”

With & factors and p responses there are k x p entities to consider. Further,
while a certain subset of factors (e.g., temperature and pressure) might be avail-
able to change one response (e.g., yield), a quite different or likely overlapping
subset (e.g., temperature and concentration) might influence a different response
(e.g., purity). Compromises may be necessary to reach a satisfactory high yield
and adequate purity. Also, some factors will interact in their influence on a par-
ticular response. For example, the change in yield induced by a particular change
in temperature might itself change at different concentrations. To take account
of all these matters simultaneously faces the experimenter with a daunting chal-
lenge. Pick and try guesses and the use of the “change one factor at a time”
philosophy of experimentation is unlikely to produce a good result quickly and
economically.

The use of statistical experimental design makes it possible, while minimizing
the influence of experimental error, to experiment with numbers of factors simul-
taneously and to get a clear picture of how they behave separately and together.
Such understanding can lead to empirical solutions to problems, but it can do
much more. A subject matter specialist provided with the results from a well-run
experiment may reason along the following lines: “When I see what x3 does to
1 and y; and how x; and x> interact in their effect on ys, this suggests to me
that what is going on is thus and so and 1 think what we ought to do now is
this.” Theoretical understanding can spring from empirical representation.

Experimental Error

Variability not explained by known influences is called experimental error. Since
Some experimental error is inevitable, knowing how to cope with it is essential.
Frequently, only a small part of experimental error is attributable to errors in
Measurement. Variations in raw materials, in sampling, and in the settings of
the'experimemal factors often provide larger components. Good experimental
design helps to protect real effects from being obscured by experimental error and
Conversely having the investigator mistakenly believe in effects that do not exist.

.
The word process is used here in its general sense. Thus a process might be an analytical method
or the manufacture of a product.
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Figure 1.3. Number of storks versus population of Oldenburg.

The confusing influence of experimental error is greatly reduced by the wise
use of statistical experimental design.® In addition, statistical analysis provides
measures of precision of estimated quantities under study (such as differences in
means or rates of change). This makes it possible to judge whether there is solid
evidence for the existence of real effects and greatly increases the probability
that the investigator will be led along a true rather than a false path.

Confusion of Correlation with Causation

Figure 1.3 shows the civilian population of Oldenburg plotted against the num-
ber of storks observed at the end of each of 7 years.” Although in this example
few would be led to hypothesize that the increase in the number of storks
caused the observed increase in population, investigators are sometimes guilty
of this kind of mistake in other contexts. Correlation between two variables Y

* Another way to state this is to say that designed experiments can greatly increase the signal-to-noise
ratio. )

T These data cover the years 1930-1936. See Omithologische Monatsberichte, 44, No. 2, Jahrgang,
1936, Berlin, and 48, No. 1, Jahrgang, 1940, Berlin, and Statistiches, Jahrbuch Deutscher Gemeinden,
27-22, Jahrgang, 1932~1938, Gustas Fischer, Jena. We arc grateful to Lars Pallesen for these
references.
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and X often occurs because they are both associated with a third factor W.
In the stork example, since the human population Y and the number of storks
X both increased over this 7-year period, the common factor W was in this

case time,

Exercise 1.2. Give other examples where correlation exists but causation does not.

1.4. A TYPICAL INVESTIGATION

To illustrate the process of iterative learning and to provide simultaneously a pre-
view of what is discussed in this book, we employ a description of an imaginary
investigation aimed at improving the quality of drinking water. Our investigators
are the chemist Rita Stoveing and the chemical engineer Peter Minerex. As you
read what follows, consider how identical statistical problems could confront
investigators in any other experimental science.

The Problem

There is of course only a limited amount of usable water on this planet and what
we have must be used and reused. The following investigation was necessary
because a particular water supply contained an unacceptably high level of nitrate.
Minerex and Stoveing had developed a new ion exchange resin that absorbed
the offending nitrate. The attractive feature of this new resin was that it was
specific for nitrate and potentially much cheaper to use and to regencrate than
currently available resins. Unfortunately, it could only be made under laboratory
conditions in experimental quantities. It was realized that a good deal of further
experimentation might be necessary before a commercially viable product could
be produced. The following outline shows how, as their investigation proceeded,
they would be led to consider different questions and employ different statistical
techniques* of varying degrees of sophistication.

Iterative Cycles of Investigation

Bim and Peter knew that observations recorded under apparently similar condi-
tions could vary considerably. Thus, before beginning their investigation every
effort was made to stabilize procedures and to reduce process variation. Fur-
thermore, they expected to have to experiment with a number of different fac-
tors and to look at several different responses. To make such a study effi-

me::l: and economical, they would need to make extensive use of statistical
methods,

* This imaginary investigation has the property that in successive iterations it uses most of the
techniques discussed in this book approximately in the order in which they appear. This. is, of
course, merely a pedagogical device. However, many investigations do go through various phases
of statistical sophistication in somewhat the manner described here.
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The two investigators had each taken a statistics
course but were currently a bit rusty.

ITERATION 1

Where can we find a quick summary of elementary
statistical principles? '

Chapter 2: Basics

Studying this chapter provided the needed review and
prepared them for what followed.

ITERATION 11

Minerex believed, and Stoveing did not, that using a
very pure (and more expensive) version of their
resin would improve its performance.

How does their “ordinary” resin compare with the
more expensive high-purity version?

Chapter 3: Comparing Two Entlities

Their expensive high-purity resin was about equal in
performance to the ordinary resin. (She was right!)

ITERATION 111

Minerex was wrong about the high-purity version, but
their ordinary resin still looked promising. They
now decided to compare laboratory samples of

" their new resin with five standard commercially
available resins.

How does their new ordinary resin compare with the
five commercially available resins?

Chapter 4: Comparing a Number of Entities

The laboratory samples of the new resin were as good
as any of the commercially available alternatives
and perhaps somewhat superior.

ITERATION IV

The new resin had been shown to be capable of doing
as-well as its competitors. However, under the
conditions contemplated for economic manufacture
the removal of nitrate was insufficient to achieve
the standard required for drinking water.

What are the most important factors influencing
nitrate removal? Can modifications in the present
manufacturing equipment affecting such factors as
flow rate, bed depth and regeneration time lead to
improved nitrate removal?

Chapters 5, 6, 7, and 8: Studies using factorial and
fractional factorial designs
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Design and Analysis
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Design and Analysis
Findings

Commentary

Question

With suitable modifications of the equipment,
sufficiently low nitrate levels could be achieved.

ITERATION V

The company now concluded that manufacture of this
new resin was possible and could be profitable. To
learn more, a pilot plant was built.

How do the settings of the process factors. affect the
quality and cost of the new resin? What are the
best settings?

Chapters 10, 11, and 12: The method of least squares,
multidimensional modeling, and response surfaces

The pilot plant investigation indicated that with
appropriate settings of the process factors a product
could be produced with satisfactory quality at a
reasonable cost.

ITERATION VI

Before the process could be recommended for
production the problems of sampling and testing
had to be solved.

How can sampling and testing methods be refined to
give reliable determinations of the characteristics of
the new resin?

Chapter 9: Multiple Sources of Variation

Components of variability in the sampling and
chemical analysis of the product were identified
and measured. Using this information, a sampling
and testing protocol was devised to minimize the
variance of the determinations at least cost.

ITERATION VII

Before the new resin could be recommended
commercially its behavior had to be considered
under a variety of environmental conditions that
might be encountered at different locations and at
different times. It was necessary to design the resin
process system so that it was insensitive to
variations due to different environments in which
the resin would be required to operate.

How can the nitrate adsorption product be designed
so as to be insensitive to factors likely to be
different at different locations, such as pH and
hardness of the water supply and the presence of
trace amounts of likely impurities?
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Chapter 13: Designing Robust Products and Processes

A process design was possible that ensured that the
manufactured new resin was insensitive to changes
in pH, water hardness, and moderate amounts of
likely impurities.

ITERATION VI

The regeneration process for the resin was done
automatically by a system containing a number of
electronic and mechanical components. It was
known that manufacturing variations transmitted by
these components could affect system
performance.

How can the regeneration system be designed so that
small manufacturing changes in the characteristics
of its components do not greatly affect its
performance?

Chapter 13: Designing Robust Products and Processes

It was found that in some instances it would be
necessary to use expensive components with
tightened specifications and that in other instances
less expensive components with wider
specifications could be substituted. A system that
gave high performance at low cost was
developed.

ITERATION IX

It was found that the full-scale plant was not easy to
control. _

How can better process control be achieved?

Chapter 14: Process Control, Forecasting, and Time
Series

By the process of debugging using monitoring
techniques and simple feedback adjustment,
adequate control was obtained.

ITERATION X

The initial process conditions for the full-scale process
were arrived at from pilot plant experiments.

How can improved conditions from the full-scale
process be achieved?

Chapter 15: Evolutionary Process Operation

Operation in the evolutionary mode provided a
steadily improving process.
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The above by no means exhausts the application of statistical methods that might
havé been necessary to produce a marketable and profitable product. For example,
it would be necessary to determine the extent of the possible market and to judge
the performance of the new resin relative to competitive products. Also, production
scheduling and inventory controls would need to be organized and monitored.

1.5. HOW TO USE STATISTICAL TECHNIQUES

All real problems have their idiosyncrasies that must be appreciated before effec-
tive methods of tackling them can be adopted. Consequently each new problem
should be treated on its own merits and with respect. Being too hasty causes
mistakes. It is easy to obtain the right answer to the wrong problem.

Find Out as Much as You Can About the Problem

Ask questions until you are satisfied that you fully understand the problem and.
are aware of the resources available to study it. Here are some of the questions
you should ask and get answers too. What is the object of this investigation?
Who is responsible? I am going to describe your problem; am I correct? Do you
have any past data? How were these data collected? In what order? On what
days? By whom? How? May I see them? How were the responses measured?
Have the necessary devices been recently checked? Do you have other data like
these? How does the equipment work? What does it look like? May I see 1t? May
I see it work? How much physical theory is known about the phenomenon? If the
process concerns a manufacturing process, what are the sampling, measurement,
and adjustment protocols? |

Don’t Forget Nonstatistical Knowledge

When you are doing “statistics” do not neglect what you and your colleagues
know about the subject matter field. Statistical techniques are useless unless
combined with appropriate subject matter knowledge and experience. They are
an adjunct to, not a replacement for, subject matter expertise.

Define Objectives

It is of utmost importance to ( 1) define clearly the objectives of the study; (2) be
sure that all interested parties concur in these objectives; (3) make sure that
the necessary equipment, facilities, scientific personnel, time, money, and ade-
Quate management support are available to perform the proposed investigation;
(4) agree on the criteria that will determine when the objectives have been met;
and (5) arrange that if the objectives have to be changed all interested parties are
Mmade aware of the new objectives and criteria, Not giving these matters sufficient
altention can produce serious difficulties and sometimes disaster.
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Learn from Each Other: The Interplay Between Theory and Practice

While experimenters can greatly gain from the use of statistical methods, the con-
verse is even more true. A specialist in statistics can learn and benefit enormously
from his or her discussions with engineers, chemists, biologists, and other subject
matter specialists. The generation of really new ideas in statistics and good sta-
tistical seem to result from a genuine interest in practical problems. Sir Ronald
Fisher, who was the originator of most of the ideas in this book, was a scientist
and experimenter who liked to work closely with other experimenters. For him
there was no greater pleasure than discussing their problems over a glass of beer.
The same was true of his friend William S. Gosset (better known as “Student”),
of whom a colleague* commented, “To many in the statistical world ‘Student’
was regarded as a statistical advisor to Guinness's brewery; to others he appeared
to be a brewer who devoted his spare time to statistics . ... Though there is some
truth in both these ideas they miss the central point, which was the intimate
connection between his statistical research and the pructical problems on which
he was engaged.” The work of Gosset and Fisher reflects the hallmark of good
science, the interplay between theory and practice. Their success as scientists
and their ability to develop useful statistical techniques were highly dependent
on their deep involvement in experimental work.
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QUESTIONS FOR CHAPTER 1

L. What is meant by the iterative nature of learning?.
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2. In what ways can statistics be useful to experimenters?

3. What is achieved by good statistical analysis? By good statistical design?
Which do you believe is more important?

4. What are three common difficulties encountered in experimental investiga-
tions? '

5. Can you give examples (if possible from your own field) of real confusion
(perhaps controversy) that has arisen because of one or more of these diffi-
culties?

6. Which techniques in this book do you expect to be most useful to you?
7. How should you use the techniques in this book?

8. Can you think of an experimental investigation that (a) was and (b) was not
iterative?

9. Read accounts of the development of a particular field of science over a
period of time (e.g., read the books The Double Helix by J. D. Watson and
The Bishops Boys (the Wright brothers) by T. D. Crouch, 1989). How do
these developments relate to the discussion in this chapter of a scientific
investigation as an iterative process? Can you trace how the confrontation of
hypotheses and data led to new hypotheses?



CHAPTER?2

Basics (Probability, Parameters,
and Statistics)

Did you take a course in elementary statistics? If yes, and you remember it,
please go on to Chapter 3. If no, read on. If you need to brush up on a few
things, you will find this chapter helpful and useful as a reference.

2.1. EXPERIMENTAL ERROR

When an operation or an experiment is repeated under what are as nearly as
possible the same conditions, the observed results are never quite identical. The
fluctuation that occurs from one repetition to another is called noise, experimental
variation, experimental error, or merely error. In a statistical context the word
error is used in a technical and emotionally neutral sense. It refers to variation
that is often unavoidable. It is not associated with blame.

Many sources contribute to experimental error in addition to errors of measure-
ment, analysis, and sampling. For example, variables such as ambient tempera-
ture, skill or alertness of personnel, age and purity of reagents, and the efficiency
or condition of equipment can all contribute. Experimental error must be distin-
guished from mistakes such as misplacing a decimal point when recording an
observation or using the wrong chemical reagent.

.It has been a considerable handicap to many experimenters that their formal
training has left themunequipped to deal with the common situation in which
experimental error cannot be safely ignored. Not only is awareness of the possible
f:ffects of experimental error essential in the analysis of data, but also its influence
1S 2 paramount consideration in planning the generation of data, that is, in the
design of experiments. Therefore, to have a sound basis on which to build practi-
cal techniques for the design and analysis of experiments, some elementary under-
Standing of experimental error and of associated probability theory is essential.

——

Statislfcs Jor Experimenters, Second Edition. By G. E. P. Box, I. S. Hunter, and W. G. Hunter
Copyright © 2005 John Wiley & Sons, Inc.
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Experimental Run

We shall say that an experimental run has been performed when an apparatus
has been set up and allowed to function under a specific set of experimental con-
ditions. For example, in a chemical experiment a run might be made by bringing
together in a reactor specific amounts of chemical reactants, adjusting tempera-
ture and pressure to the desired levels, and allowing the reaction to proceed for
a particular time. In engineering a run might consist of machining a part under
specific manufacturing conditions. In a psychological experiment a run might
consist of subjecting a human subject to some controlled stress.

Experimental Data or Results

An experimental result or datum describes the outcome of the experimental run
and is usually a numerical measurement, Ten successive runs made at what were
believed to be identical conditions might produce the following data:

66.7 643 67.1 66.1 655 69.1 672 681 657 664

In a chemical experiment the data might be percentage yield, in an engineering
experiment the data could be the amount of material removed in a machining
operation, and in a psychological experiment the data could be the times taken
by 10 stressed subjects to perform a specific task.

2.2. DISTRIBUTIONS

The Dot Diagram

Figure 2.1 is a dot diagram showing the scatter of the above values. You will
find that the dot diagram is a valuable device for displaying the distribution of a
small body of data. In particular, it shows: '

I. The location of the observations (in this example you will see that they are
clustered near the value 67 rather than, say, 85 or 35).

2. The spread of the observations (in this example they extend over about
S units).

3. Whether there are some data points considerably more extreme that the rest.
Such “outliers” might result from mistakes either in recording the data or
in the conduct of a particular test.

| X EEe ., X I I X 3N ) ) |
63 64 65 66 67 68 69 70

Yield

Figure 2.1. Dot diagram for a sample of 10 observations,.
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The Frequency Distribution

When you have a large number of results, you will be better able to appreciate the
data by constructing a frequency distribution, also called a histogram or frequency
diagram. This is accomplished by dividing the horizontal axis into intervals
of appropriate size and constructing a rectangle over the ith interval with its
area proportional to n;, the number (frequency) of observations in that interval.
Figure 2.2 shows a frequency distribution for N = 500 observations of yield from
a production process.® In this example each observation was recorded to one
decimal place. The smallest of the observations was between 56 and 57 and the
largest between 73 and 74. It was convenient therefore to classify the observations
into 18 intervals, each covering a range of one unit. There were two observations
in the first interval, thus n; = 2. Since in this example all the intervals are of
width 1, the frequency of observations #n; in the ith interval, i = 1,2, ..., 18, is
directly proportional to the height (ordinate) on the vertical axis.

Figure 2.2 gives a vivid impression of the 500 observations. In particular, it
shows their location and spread. But other characteristics are brought to your
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Rure 2.2. Frequency diagram (histogram, frequency distribution) for a sample of SO0 observations:
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case the “-_ afcfmlmm:nes constructed for data in \\.’thh the intervals are o.f different width. In that

of obsery ; ;“ Y ﬂ{C r}‘ktangl'c constructed over cach interval must be proportional to n,, the frequency
v ons within that interval,
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attention, for instance, that about % of the observations lie between 60 and 70.
This fraction, more precisely 2—(’% is represented by the shaded region under the
frequency diagram. Notice too that the histogram is not symmietric but tails off
slowly for observations having high values. |

Exercise 2.1. Construct a dot diagram with data given in miles per gallon for
five test cars: 17.8, 14.3, 15.8, 18.0, 20.2.

Exercise 2.2. Construct a histogram for these air pollution data given in parts
per million of ozone: 6.5, 2.1, 4.4, 4.7, 5.3, 2.6, 4.7, 3.0, 4.9, 4.7, 8.6, 5.0, 4.9,
4.0,3.4,56,4.7,2.7,24,21,22,5.2,5.3,47,6.8, 4.1, 53, 7.6, 2.4, 2.1, 4.6,
43,3.0,4.1,6.1,4.2.

Hypothetical Population of Results Represented by a Distribution

The total aggregate of observations that conceptually might occur as the result of
repeatedly performing a particular operation is referred to as the population of
observations. Theoretically, this population is usually assumed to be infinite, but
for the purposes of this book you can think of it as having size N where N is
large. The (usually few) observations that actually have occurred are thought of
as some kind of sample from this conceptual population. With a large number of
observations the bumps in the frequency diagram often disappear and you obtain
a histogram with an appearance like that in Figure 2.3. (Until further notice you
should concentrate on this histogram and ignore for the moment the smooth
curve that is superimposed.) If you make the area of the rectangle erected on
the ith interval of this histogram equal to the relative frequency n;/N of values
occurring in that interval, this is equivalent to choosing the vertical scale so that
the area under the whole histogram is equal to unity.

0.08 |- r-

T 0.06 |-

3004}

0.02 -
rFF

Figure 2.3. Hypothetical probability distribution for a conceptual population of observations.
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Randomness and Probability

A random drawing is one where each member of the population has an equal
chance of being chosen. Imagine you have written each of the N observations
from the population on a ticket and put all these into a lottery drum and in
a random drawing you obtain some value y. Then:

1. The probability that y is less than some value yg, Pr(y < yo), will be
equal to the area under the histogram to the left of y, [for i]lvustration. in
Figure 2.3, if yo was equal to 60, the probability that y was less than 60
would be 0.361. i.e., Pr(y < yo) = 0.361].

2. The probability Pr(y > yo) that y is greater than yo will be equal to the
area under the histogram to the right of y.

3. The probability Pr(yo < y < y;) that y is greater than yp but less than
y; will be equal to the area under the histogram between yo and y,. For
example, in Figure 2.3 the shaded portion has an area of 0.545 so that
Pr(60 < y < 70) = 0.545.

To the accuracy of the grouping interval the diagram of relative frequencies for
the whole population tells you everything you can know about the probability of
a randomly chosen member of the population falling within any given range. It
is therefore called a probability distribution.

Probability Density

In this example the width of the grouping interval happens to be one unit of
yield, but suppose it is 4 units of yield. Suppose also that for a particular interval
of size & the height of the constructed rectangle is p(y) and its area is P. (Recall
that this area P = n/N is the probability of the interval containing a randomly
chosen y.) Then P = p(y) x h and p(y) = P/ h. The probability density; that is
the ordinate p(y), is thus obtained by dividing the probability, the area associated
with a given interval, by the width of the interval. Notice that it is always an
area under the probability distribution that represents probability. The ordinate
P(y) of the distribution, the density at the point y, is not itself a probability
and only becomes one when it is multiplied by the appropriate interval width.
Probability density has the same status as physical density. Knowing the density
of a metal does not tell you whether a given piece of the metal will be heavy
or light. To find this out, you must multiply its density by its volume to obtain

its mass. Thus probability = probability density x interval size, just as mass =
density x volume. ’

Representing a Probability Distribution by a Continuous Curve

Nf-’“’ ;»if you .imagine the interval h taken to be very small, the probability P
Essocmtcd with the interval becomes proportionally small also, but no matter
OW far you carry the process, the probability density p(y) = P/h can still be
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finite. In the limit, as the interval becomes infinitesimally short, you can conceive
of the population being represented by a continuous probability distribution like
the continuous dashed line in Figure 2.3.

When a mathematical function is used to represent this continuous probability
distribution, it is sometimes called the (probability) density function. One such
theoretical function is the normal distribution, which is discussed later in this
chapter. Just as before, the total area under a continuous probability distribution
must be unity, and the area between any two values yy and y; is equal to Pr(yy <
v <y

A question sometimes asked is: Given that the theoretical population is repre-
sented by a continuous curve, what is the probability of getting a particular value
of y, say y = 66.3? If the question referred to the probability of y being exactly
66.300000000 . .. corresponding to a peint on the horizontal axis, the answer
would be zero, because P = p(y) x h and h is zero. However, what is usually
meant is: Given that the observations are made, say, to the nearest 0.1, what is
the probability of getting the value y = 66.3? Obviously, the answer to this ques-
tion is not zero. If we suppose that all values between y = 66.25 and y = 66.35
are recorded as y = 66.3, then we require Pr(66.25 < y < 66.35). The required
probability is given by the area under the curve between the two limits and is
adequately approximated by p(66.3) x 0.1. O

Sample Average and Population Mean

One important feature of a sample of n observations is its average value, denoted
by ¥(read as “y-bar™), For the sample of 10 observations plotted in Figure 2.1

66.7+64.3+ .- +664

66.62
10

In general, for a sample of n observations, you can write

y=

N s b LD D
n n

where the symbol 3, a capital sigma, before the y’s means add up all the y's.™
Since 7 tells you where the scatter of points is centered along the y axis, more
precisely where it will be balanced, it is a measure of location for the sample. 1f
you imagine a hypothetical population ‘as containing some very large number N
of observations, it is convenient to note the corresponding measure of location

*In some instances where you want to indicate a particular sequence of y’s to be added together,
you need a somewhat more elaborate notation, Suppose that ¥. ¥2, ¥3. ... refer to the first, second,
third observations, and so on, 8o that y; means the jth observation. Then, for example, the sum of
the observations beginning with the third observation y3 and ending with the eighth yg is written as
ZLJ y;j and means yy + y3 + ys + Vo + Y7 + ).
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by the Greek letter 7 (eta) and to call it the population mean, so that

¥

]]:

3.3. STATISTICS AND PARAMETERS

To distinguish between the sample and population quantities, 1 is called the
population mean and y the sample average. A parameter like the mean 7 is a
quantity directly associated with a population. A statistic like the average y is a
quantity calculated from a set of data often thought of as some kind of sample
taken from the population. Parameters are usually designated by Greek letters;
statistics by Roman letters. In summary:

Population: a very large set of N observations from which your sample of
observations can be imagined to come.

Sample: the small group of n observations actually available.
Parameter: population mean n'=)_y/N.
Statistic: sample average ¥y = Y_ y/n.

The mean of the population is also called the expected value of y or the mathe-
matical expectation of y and is often denoted as E(y). Thus n = E(¥).

The Hypothesis of Random Sampling?

Since the hypothetical population conceptually contains all values that can occur
from a given operation, any set of observations we may collect is some kind
of sample from the population. An important statistical idea is that in certain
circumstances a set of observations may be regarded as a random sample.

This hypothesis of random sampling however will often nor apply to actual
data. For example, consider daily temperature data. Warm days tend to follow one
another, and consequently high values are often followed by other high values.
Such data are said to be autocorrelated and are thus not directly representable by
random drawings.* In both the analysis and the design of scientific experiments
Tnuch hangs on the applicability of this hypothesis of random sampling. The
Importance of randomness can be appreciated, for example, by considering public
opinion polls. A poll conducted on election night at the headquarters of one
polmcal party might give an entirely false picture of the standing of its candidate
in the voting population. Similarly, information generated from a sample of apples
taken.from the top of the barrél can prove misleading.

I.t s unfortunate that the hypothesis of random sampling is treated in much
statistical writing as if it were a natural phenomenon. In fact, for real data it is
4 property that can never be relied upon, although suitable precautions in the
design of an experiment can make the assumption relevant,

In Chapter 14 you will see how autocorrelated data can be indirectly represented by random drawings.
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2.4. MEASURES OF LOCATION AND SPREAD

The Population Mean, Variance, Standard Deviation, and Coefficient
of Variation

As you have seen, an important characteristic of a population is its mean value
n = Y_ y/N. This mean value n is called a parameter of the distribution. It is also
called the mathematical expectation of y and denoted by E(Y). Thus E(Y) = 5. It
is the first moment of the distribution of y, and it defines the point of balance along
the horizontal axis, as illustrated in Figure 2.4. It thus supplies a measure of the
location of the distribution, whether, for instance, the distribution s balanced at 0.6,
60, or 60,000. Knowledge of location supplies useful but incomplete information
about a population. If you told visitors from another world that adult males in the
United States had a mean height of approximately 70 inches, they could still believe
that some members of the population were 1 inch and others 1000 inches tall. A
measure of the spread of the distribution would help give them a better perspective.,

The most useful such measure for our purposes is the variance of the population,
denoted by o? (sigma squared). A measure of how far any particular observation
y is from the mean 7 is the deviation y — #; the variance o2 is the mean value of
the squares of such deviations taken over the whole population. Thus

_X- n)?
N

Just as the special symbol E(y) may be used to denote the mean value, E(y) = 1,
so too the special symbol V(y) is used to denote the variance, and thus V(y) =
o2, A measure of spread which has the same units as the original observations
is o, the positive square root of the variance—the root mean square of the
deviations. This is called the standard deviation

o =+Vol=+/V(W) =+VEG -ni=+ Lly=n”

o= E(y—n)’

N
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Figure 2.4. Mcan n = E(y) as the point of balance for the distribution.
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Occasionally a subscript will accompany o. Thus the symbol oy leaves no doubt
that you are talking about the standard deviation of the population of observations
y and not, for example, about some other population of observations z.

Average, Variance, and Standard Deviation of a Sample

The data available to an investigator may be thought of as a small sample of n
observations from the hypothetical larger set N represented by the population.
For the data in the dot diagram of Figure 2.1 the sample average ¥ = )_ y/n =
666.2/10 = 66.62 supplies a measure of the location of the sample. Similarly,
the sample variance supplies a measure of the spread of the sample. The sample
variance is calculated as

2= Z()’_}T)z - Eyz—nyz

n—1 n—1

The positive square root of the sample variance gives the sample standard de-
viation,

Y-

= 4,[———T—

n—1

which has the same units as the observations. Thus for the sample of 10 obser-
vations in Figure 2.1 the sample variance is

o (667~ 66.62)% + (64.3 — 66.62)% + - -+ + (66.4 — 66.62)2
- 9

_ 44398.96 — 10(66.62)*

= 1.
5 86

and the sample standard deviation is 5 = 1.36.

. Once again, as was true for the mean n and the average y, a Greek letter
1S used for the population parameter and a Roman letter for the corresponding
sample statistic. Thus o2 and o are parameters that denote the population variance
ﬂnd. population standard deviation, and the statistics s* and s denote the sample
variance and sample standard deviation. A summary is given in Table 2.1.

The Coefficient of Variation

Suppose you need to know how big is the standard deviation o relative to the
mean 7. The ratio a/y is called the coefficient of variation. When writtent as a
percentage 100 o/p, it is sometimes called the percentage error. A coefficient of
varation of 3% would imply that o was 3% of the mean n. As you will see later,
itis very closely related to the standard deviation of log y. The sample coefficient
of variation is s /Y. Its inverse, ¥/s, is sometimes referred to as a signal-to-noise
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Table 2.1, Population and Sample Quantities

Definition  Population: a hypothetical set of ¥ Sample: a set of n available
observations from which the sample of observations (typically n is
observations actually obtained can be small)
imagined to come (typically N is very
large)

Parameters Statistics

Measure of  Population mean 5 = Y y/N Sample average ¥ = )" v/n

location ,
Measure of  Population variance Sample variance
spread o
b 2= Yy - N 2= Yy =D 1)
Population standard deviation Sample standard deviation
o =+V/2(y—n?*N s=+/S 0 =NYn-1

ratio. For the dot diagram data of Figure 2.1 the sample coefficient of variation
5/¥ is 1.36/66.62 = 0.020 = 2%.

The Median

Another measure of a sample that is occasionally useful is the median. It may be
obtained by listing the n data values in order of magnitude. The median is the
middle value if # is odd and the average of the two middle values if n is even.

Residuals and Degrees of Freedom

The a deviations of observations from their sample average are called residuals.
These residuals always sum to zero. Thus ) (y — ¥) = 0 constitutes a linear con-
straint on the residuals y{ — ¥, ¥ —¥,....¥, — ¥ because any n — 1 of them
completely determine the other. The n residuals y — ¥ (and hence the sum of
squares ) (y — ¥)* and the sample variance s2 = Y (v — ¥)?/(n — 1)) are there-
fore said to have n — 1 degrees of freedom. In this book the number of degrees of
freedom is denoted by the Greek letter v (nu). For the dot diagram data the sample
variance is s° = 1.86, the sample standard deviation is s = +/1.86 = 1.36, and
the number of degrees of freedomis v=n—-1=10—1=9. The loss of one
degree of freedom is associated with the need to replace the unknown population
parameter 5 by the estimate ¥ derived from the sample data. It can be shown
that because of this constraint the best estimate of o2 is obtained by dividing the
sum of squares of the residuals not by n but by v=n —1.

In later applications you will encounter examples where, because of the need
to calculate several sample quantities to replace unknown population parame-
ters, several constraints are necessarily placed on the residuals. When there are
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p independent linear constraints on n residuals, their sum of squares and the
resulting sample variance and standard deviation are all said to have v=n—p
degrees of freedom.

Sample Variance If the Population Mean Were Known: The “Natural”
variance and Standard Deviation

If the population mean n were known, the sample variance would be calculated
as the ordinary average of the squared deviations from this known mean,

2 = Z()’ - 77)2
T n

The statistic is designated by a dot to distinguish it from s2. The sum of squares
Yy — n)? and the associated statistic §2 would then have n degrees of freedom
because all # quantities y — 7 are free to vary; knowing n — 1 of the deviations.
does not determine the nth. In this book we will call §* the narural variance and
§ the natural standard deviation.

Exercise 2.3. Calculate the average and standard deviation for the following data
on epitaxial layer thickness in micrometers: 16.8, 13.3, 11.8, 15.0. 13.2. Confirm
that the sum of the residuals y — ¥ is zero. Illustrate how you would use this fact
to calculate the fifth residual knowing only the values of the other four.

Answer: y = 14.02, s = 1.924 with v = 4 degrees of freedom.

Exercise 2.4. A psychologist measured (in seconds) the following times required
for 10 rats to complete a maze: 24, 37, 38, 43, 33, 35, 48, 29, 30, 38. Determine
the average, sample variance, and sample standard deviation for these data.

Answer: § = 35.5, §* = 48.72, s = 6.98 with v = 9 degrees of freedom

Exercise 2.5. The following observations on the lift of an airfoil (in kilograms)
were obtained in successive trials in a wind tunnel: 9072, 9148, 9103, 9084,
9077. 9111, 9096. Calculate the average, sample variance, and sample standard
deviation for these observations.

Answer: y = 9098.71, 52 = 667.90, s = 25.84 with v = 6 degrees of freedom

Exercise 2.6. Given the following liters of a reagent required to titrate Q grams
of a substance: 0.00173, 0.00158, 0.00164, 0.00169, 0.00157, 0.00180. Calcu-
late the average, the sample variance, and sample standard deviation for these
observations.

Answer: § = 0.00167, s2 = 0.798 x 1078, s = 0.893 x 10~* with v = 5 degrees
of freedom

2.5. THE NORMAL DISTRIBUTION

Repeated observations that differ because of experimental error often vary about
Some central value in a roughly symmetric distribution in which small deviations
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Figure 2.5. Normal (Gaussian) distribution.

occur much more frequently than large ones. For representing this situation a
valuable theoretical distribution that occupies an important position in the theory
of statistics is the Gaussian, or normal, distribution. The appearance of this dis-
tribution and its mathematical formula are shown in Figure 2.5. It is a symmetric
curve with its highest ordinate at its center, tailing off to zero in both direc-
tions in a way intuitively expected of experimental error. It has the property that
the logarithm of its density function is a quadratic function of the standardized
residual (y — n)/o.

Reasons for the Importance of the Normal Distribution

Two things explain the importance of the normal distribution:

1. The central limit effect that produces a tendency for real error distributions
to be “normal like.”

2. The robustness to nonnormality of some common statistical procedures,
where “robustness” means insensitivity to deviations from theoretical
normality,

The Central Limit Effect

Usually the “overall” error y — n = e is an aggregate of a number of component
errors. Thus a measurement of yield obtained for a particular experimental run
may be subject to analytical error, chemical sampling error and process error
produced by failures in meeting the exact settings of the experimental conditions,
errors due to variation in raw materials, and so on. Thus e will be some function
of a number of component errors e\, ez, . : ., €, If each individual error is fairly
small, it would usually be possible to approximate the overall error as a linear
function of the component errors

e=ayey+azey;+ -+ anén
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where the a’s are constants. The central limit theorem says that, under conditions
almost always satisfied in the real world of experimentation, the distribution of
such a linear function of errors will tend to normality as the number of its
components becomes large. The tendency to normality occurs almost regar.dless
of the individual distributions of the component errors. An important proviso is
that several sources of error must make important contributions to the overall
error and that no particular source of error dominate the rest.

Iilustration: Central Limit Tendency for Averages

Figure 2.6a shows the distribution for throws of a single true six-sided die. The
probabilities are equal to § for each of the scores 1, 2, 3, 4, 5, or 6. The mean
score is n = 3.5. Figure 2.6b shows the distribution of the average score obtained
from throwing two dice, and Figures 2.6¢, d, and e show the distributions .of
average scores calculated for throwing 3, 5, and 10 dice. To see how the central
limit effect applies to averages, suppose e[, €2, ...; &, denote the deviations of
the scores of the individual dice from the mean value of n = 3.5. Let e be
the corresponding deviation of the average, that is, e = )_¢;/n. Then e will
satisfy the equation e = aje; + azey + - - + a,e, with all the a's set equal to
1/n. Whereas the original, or parent, distribution of the individual observations
(the scores from single throws) is far from normal shape, the ordinates of the
distribution for the averages are remarkably similar to ordinates of the normal
distribution even for n as small as 5.
In summary:

1. When, as is usual, an experimental error is an aggregate of a number of
component errors, its distribution tends to normal form, even though the
distribution of the components may be markedly nonnormal.

2. A sample average tends to be normally distributed, even though the indi-
vidual observations on which it is based are not. Consequently, statistical
methods that depend, not directly on the distribution of individual obser-
vations, but on the distribution of averages tend to be insensitive or robust
to nonnormality.

3. Procedures that compare means are usually robust to nonnormality. How-
ever, this is not generally true for procedures for the comparison of variances.

Robustness of Procedures to the Assumption of Normality

!t is 'irnportant to remember that all mathematical—-statistical models are approx-
Imations. In particular, there never was, nor ever will be, an exactly straight line
Or observations that exactly follow the normal distribution. Thus, although many
of the techniques described here are derived on the assumption of normality,
approximate normality will usually be all that is required for them to be useful.
In particular, techniques for the comparison of means are usually robust to non-
hormality. Unless specifically warned, you should not be unduly worried about
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Figure 2.6. Distribution of averages scores from throwing various numbers of dicé: (a) 1, (b) 2. (¢)
3. () S, and (e) 10 dice.

normality. You should of course be continually on the look-out and check for
gross violations. of this and all other assumptions.

Characterizing the Normal Distribution

Once the mean n and the variance o2 of a normal distribution are given, the entire
distribution is characterized. The notation N(n,o0?) is often used to indicate
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a normal distribution having mean 5 and variance o*. Thus, the expression
N2(30,25) identifies a normal distribution with a mean n = 30 and a variance
o“ =25, Normal distributions .are shown in Figure 2.7 for N(—5, 25), N(5,
100),. N(30, 25), and N(30, 6.25). These distributions are scaled so that each
area 1s equal to unity.

. For a normal distribution the standard deviation o measures the distance from
lt§ mean 7 to the point of inflection on the curve. The point of inflection (see
Fig. 2.8) is the point at which the slope stops increasing and starts to decrease

(or vice versa). The following should help you gain a fuller appreciation of the
normal distribution;

1. The probability that a positive deviation from the mean will exceed one
sta{\dard deviation is 0.1587 (roughly %)., This is represented by the shaded
“tail” area shown in Figure 2.8.
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2. Because of symmetry, this probability is exactly equal to the chance that a
negative deviation from the mean will exceed one standard deviation.

3. From these two statements it is clear that the probability that a deviation in
either direction will exceed one standard deviation is 2 x 0.1587 = 0.3174
(roughly: %), and consequently the probability of a deviation of less than
one standard deviation is 0.6826 (roughly 3).

4. The chance that a positive deviation from the mean will exceed two standard
deviations is 0.0228 (roughly ). This is represented by the heavily shaded
region in Figure 2.8.

. Again, this is exactly equal to a chance that a negative deviation from the
mean will exceed two standard deviations.

o

6. From these two statements the chance that a deviation in either direction
will exceed two standard deviations is 0.0456 (roughly ;'5 or 0.05)

A probability statement concerning some normally distributed quantity y is
often best expressed in terms of a standardized normal deviate or unit normal
deviate,

The quantity z is said to have a distribution that is N(0,1), that is, z has a normal
distribution with a mean 5 = 0 and a variance 02 = 1. We can therefore rewrite
the previous statements as follows:

I. Pty > n+0) =Pr(y =) > 0] = Pr[(r‘%l) > 1] =Pr(z>1)=
0.1587

Pr(z < —1) = 0.1587

Pr(|z| > 1) = 0.3174

Pr(z > 2) = 0.0228

Pr(z < —2) = 0.0228

Pr(jz| > 2) = 0.0455

= NS VR

Using Tables of the Normal Distribution

In general, to determine the probability of an event y exceeding some value Yo,
that is, Pr(y > vp), you compute the normal deviate zo = (yo — 17)/o and obtain
Pr(z > 7o) from a computer program or from Table A at the end of this book.
(The probabilities associated with the normal deviate are also available on many
hand-held calculators.) For example, given a normal population with mean » = 39
and variance 02 = 16, what is the probability of obtaining an observation greater
than 42, that is, Pr(v > 42)? The normal deviate z = (42 — 39)/4 = 0.75 and the
required probability is Pr(z > 0.75) = 0.2266. As a second example, given that
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the distribution is N (39, 16), what is the probability that an observation will lie
in the interval 38 <y < 42)? The answer is 0.3721. To visualize this problem
(and similar ones), it is helpful to sketch a normal distribution located with mean
— 39 with a standard deviation o = 4 and shade in the area in question. Table
A at the end of this book gives the arca in the upper tail of the standardized

distribution, that is, Pr{z > z0).*

Exercise 2.7. The percent methanol in batches of product has an upper speci-
fication limit of 0.15%. Recorded data suggest the methanol observations may
be characterized by a normal distribution with mean 7 = 0.10% and standard
deviation o = 0.02%. What is the probability of exceeding the specification?

Exercise 2.8. The upper and lower specification limits on capacitance of ele-
ments within a circuit are 2.00 to 2.08 pF. Manufactured capacitors can be
purchased that are approximately normally distributed with mean n = 2.50 uF
and a standard deviation of 0.02 nF. What portion of the manufactured product
will lie inside the specifications?

2.6. NORMAL PROBABILITY PLOTS

A normal distribution is shown in Figure 2.9a. Suppose the probability of an
occurrence of some value less than x be given by a shaded area P. If you now
plot P against x, you will obtain the sigmoid cumulative normal curve as in
Figure 2.9b. Normal probability plots adjust the vertical scale (see Fig. 2.9¢) so
that P versus x is displayed as a straight line.

Now consider the dots in Figure 2.9a representing a random sample of 10
observations drawn from this normal distribution. Since the sample size is 10,
the observation at the extreme left can be taken to represent the first P = 10% of
the cumulative distribution so you would plot this first observation on Figure 2.9b
midway between zero and 10%, that is, at 5%. Similarly, the second observation
from the left can be taken as representative of the second 10% of the cumulative
distribution, between 10 and 20%, and it is plotted at the intermediate value 15%.
{\s expected, these sample values approximately trace out the sigmoid curve as
in Figure 2.9b. Thus, when the same points are plotted on a normal probability
scale, as in Figure 2.9¢, they plot roughly as a straight line. Most computer
software programs provide normal probability plots. Many offer comments on
the adequacy of fitted lines and identify points either on or off the line. We
believe that such commentary should be treated with some reserve and what to
do about it is best left to the investigator. Scales for making your own normal
Probability plots are given in Table B at the end of this book. Intercepts such that
P; = 100(i — 0.5)/m are given for the frequently needed values m = 15, 31, 63,
16, 32, 64. Instead of identifying the ordinates by percentages, it is common to

* Other normal tables may consider other areas, for example, that Pr(z < zg) or Pr(0 < z < 2p).
When you use a normal table, be sure to note which arca (probability) is associated with z.
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Figure 2.9. Normal distribution and the normal probability plot.

use as an alternative the normal scores (the number of standard deviations from
the mean), also shown in Figure 2.9c¢.

Using Normal Probability Plots

Normal plots are used not so much for the purpose of checking distributional nor-
mality; a very large sample would be needed to do that. They can however point to
suspect values that may have occurred. A further important application of normal
probability plots is in the analysis of experiments using factorial and fractional
factorial statistical designs. These applications are discussed in Chapters 5 and 6.

An Estimate of o from the Normal Plot

The slope of the normal plot can provide an approximate estimate of the standard
deviation 0. As you will see from Figure 2.9¢, if you read off the value of x for
probabilities 16%, 50%, and 84%, then an estimate of o is equal to the distance
on the x axis between the 16% and 50% points, or between the 50% and 84%
points, or half the distance between the 16% and 84% valucs.

2.7. RANDOMNESS AND RANDOM VARIABLES

Suppose you knew the distribution p(y) of the population of heights of recruits in
the Patagonian arimy and suppose that a recruit was selected randomly. Without
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seeing him, what do you know of his height? Certainly you do not know it
exactly. But it would be incorrect to say you know nothing about it because,
knowing the distribution of heights of recruits, you can make statements of the
following kind: The probability that the randomly chosen recruit is shorter than
yp inches is Fo; the probability that he is taller than ¥, inches but shorter than y,
inches is P;. A quantity y, such as the randomly drawn recruit’s height, which is
not known exactly but for which you know the probability distribution is called

a random variable.

Statistical Dependence

Suppose you were considering two characteristics, for example, the height y,
in inches and the weight y; in pounds of the population of recruits. There will
be a distribution of heights p(v{) and of weights p(y;) for these soldiers; thus
the height and weight of a randomly drawn recruit have probability distributions
and are random variables. But now consider the probability distribution of the
weights of all recruits who were 75 inches tall. This distribution is written as
p(y2 | ¥1'=175). Itis called the conditional distribution of weight y> given that y,
is 75 inches (the vertical slash stands for the word “given”). Clearly, you would
expect the conditional distribution p(y2 | y1 = 75) for the weights of recruits who
were 75 inches tall to be quite different from, say, the conditional distribution of
weights p(y2 | y1 = 65) of recruits 65 inches tall. The random variables height
¥ and weight y» would be said therefore to be statistically dependent.

Now suppose that y3 was a measure of the 1Q of the recruit. It might well be
true that the conditional distribution of IQ would be the same for 75-inch recruits
as for a 65-inch recruit. That is,

pP(3ly =75) = p(ys|vi = 65)

If the conditional distribution was the same whatever the height of the recruit, then

pP(yln) = p(y3)

and y; and y; would be statistically independent.

The Joint Distribution of Two Random Variables

With. height y) measured to the nearest inch and weight ¥2 to the nearest pound,
consider the joint probability of obtaining a recruit with height 65 inches and
weight 140 pounds. This probability is denoted by Pr(y; = 65, y» = 140). One
way of finding recruits of this kind is (1) to pick out the special class of recruits
weighing 140 pounds and (2) to select Sfrom this special class those recruits who
are 65 inches tall. The required joint probability is then the probability of finding
A recruit who weighs 140 pounds multiplied by the probability of finding a recruit
Who is 65 inches tall given that he weighs 140 pounds. In symbols we have

Pr(y; = 65, y2» = 140) = Pr(y; = 140) x Pr(y; = 65 | y2 = 140)
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You could have made the selection equally well by first picking the class with
recruits with the desired heu,ht and then selecting from this class those with the
required weight. Thus, it is equally true that

Pr(y, = 65, y2 = 140) = Pr(y; = 65) x Pr(y» = 140 | y, = 65)

Parallel relationships apply to probability densities. Thus, if p(y;, y2) is the
joint density associated with specific (exact) values of two random variables y,
and y;, that density can always be factored as follows:

PO, y2) =pQ) X p(y2 | 1) =p(y2) x p(yi | »2)

A Special Form for the Joint Distribution of Independent Random
Variables

If yy and y, are statistically independent, then p(y; | y;) = p(¥2). Substitution
of this expression into p(y;, y2) = p(y1) x p(y2 | y1) shows that in the special
circumstance of statistical independence the joint probability density may be
obtained by multiplying individual densities:

P(y1.y2) = p(n) X p(y2)

A corresponding product formula is applied to probabilities of events, Thus, if
y3 was a measure of IQ independent of height y,, the probability of obtaining a
recruit with an 1Q greater than 130 and a height greater than 72 inches would
be given by the product of the two probabilities:

Pr(y; > 72, y3 > 130) = Pr(y; > 72) x Pr(y; > 130)

The product formula does not apply to variables that are statistically dependent.
For instance, the probability that a randomly chosen recruit weighs over 200
pounds (y, > 200) and measures over 72 inches in height (¥, > 72) cannot be
found by multiplying the individual probabilities. The product formula does not
hold in this instance because p(y; | y;) is not equal to p(y:) but rather depends
on yi.

These arguments generalize to any number of variables. For example, if i, y2.
.+« ¥n are independently distributed random variables and y(o, ¥20, ..., Yno are
particular values of these random variables, then

Pr(y; > ¥10. ¥2.> Y200+ -+« ¥a > Yno) = Pr(y1 > y10) X Pr(y2 > y20)

X oo X Pr(yn > Yng)

Application to Repeated Scientific Observations

In the examples above yi, y3, ..., ¥o represented different kinds of variables—
height, weight, IQ. These formulas also apply when the variables are observations



58 COVARIANCE AND CORRELATION AS MEASURES OF LINEAR DEPENDENCE 37

of the saine phenomena. Suppose that v, ys, -. ., ¥» are measurements of specific
gravity recorded in the order in which they were made. Consider the first observa-
tion y1. Suppose it can be treated as a random variable, that is, it can be characterized
as a drawing from some population of first observations typified by its density func-
tion p(y1). Suppose the subsequent observations ys, y3, ..., ¥, can be similarly
treated and they have density functions p(yi), p(y2), pO3)s .- .. p(yn), respec-
tively. If y1, ¥2, .., yo are statistically independent, then p(¥1, ¥20eeey Yu) =
p(1) X p(y2) X+ -+ x p(¥a). And if p(y1), p(y2), p(y3), - .., p(ya) are not only
independent but also identical in form (had the same location, spread. and shape),
then these n repeated observations would be said to be independently and identi-
cally distributed (often shortened to 1ID). In that case the sample of observations
Y1, Y2, - ++» Yu 18 as if it had been generated by random drawings from some fixed
population typified by a single probability density function p(y). If in addition the
common population distribution was normal, they would be normally, identically,
and independently distributed (often shorted to NIID). The nomenclature 11D and
NIID is used extensively in what follows.

2.8. COVARIANCE AND CORRELATION AS MEASURES OF LINEAR
DEPENDENCE

A measure of linear dependence between, for example, height y; and weight ya is
their covariance. Just as their variances are the mean values of the population of
squared deviations of observations from their means, so their covariance (denoted
by Cov) is the mean value of the population of the products of these deviations
Y1 —m with y, — nz. Thus,

2
2

Vi =E(y —n)?=0l, VO =Em-m)i=o

and
Cov(yn y2) = EGn —m)(ya — ) = Y = m)(32 = m2)/N

In particular, if y1 and y, were independent, Cov(yy, y2) would be zero.*

In practice, recruits that deviated positively (negatively) from their mean height
}Jv'ould tend to deviate positively (negatively) from their mean weight. Thus pos-
itive (negative) values of y; — n; would tend to be accompanied by positive
(negative) values of y2 — 12 and the covariance between height and weight would
be positive. Conversely, the covariance between speed of driver reaction and
alcohol consumption would likely be negative; a decrease in reaction speed is.
associated with an increase in alcohol consumption, and vice versa.

The covariance is dependent upon the scales chosen. If, for example, height
Was measured in feet instead of inches, the covariance would be changed. A

;rhc converse is not true. For example, suppose, apart from error, that y; was a quadratic function
of y2 'lhnl plotted like the letter U. Then, although y; and y, would be statisticully dependent, their
Covariance could be zero, '
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“scaleless covariance™ called the correlation coefficient identified by the symbol
p(y1, y2) or simply p (the Greek letter rho) is obtained by dividing the cross
product of the deviations y; — 1, and y; — 12 by 07 and o, respectively. Thus

Yy — 'y — 779 C v Yo Ny
o= p(yhyz)zb.[()l m) (y2 n-)] _ Covivi.ya) _ _Cov(yi, y2)

(o o g} 0,02 VV(1)V(y2)

Equivalently, we can write Cov(y;, y2) = po,03.
The sample correlation cocfficient between y; and y; is then defined as

S UESAS ATIEY

152

The numerator in this expression is called the sample covariance, and 5| and s,
are the sample standard deviations for y; and ys.

Exercise 2.9. Compute the sample correlation coefficient for these data:

yi (height in inches) 65 68 67 70 75
vy (weight in pounds) 150 130 170 180 220

Answer: 0.83.

Serial Dependence Measured by Autocorrelation

When data are taken in sequence, there is usually a tendency for observations
made close together in time (or space) to be more alike that those taken farther
apart. This can occur because disturbances, such as high impurity in a chemical
feedstock or high respiration rate in an experimental animal, can persist. There
are other instances where consecutive observations are less alike than those taken
farther apart. Suppose, for example, that the response measured is the apparent
monthly increase in the weight of an animal calculated from the differences of
monthly weighings. An abnormally high increase in weight recorded for QOctober
(perhaps because of water retention) can result in an unusually low increase being
attributed to November.

If sufficient data are available, serial correlation can be seen by plotting each
observation against the immediately proceeding one (y, vs. »—;). Similar plots
can be made for data two intervals apart (v, vs. y,—2), three units apart, and so on.
The corresponding correlation coefficients are called autocorrelation coefficients.
The distance between the observations that are so correlated is called the lag. The
lag k sample autocorrelation coefficient is defined by

= Z(.Vl -V —Y)
£ Z(}"r. - Y)Z
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Exercise 2.10. Compute ry for these data: 3,6,9,8,7,5,4.
Answer: 0.22.

Note: There is little point in calculating autocorrelation coefficients fo.r S}xch sx‘nalll
samples. The above exercise is included only to help gain an appreciation of the
meaning of the formula for r. Standard software programs can quickly provide
all sample autocorrelations up to any desired lag k. The plot of r; versus k is
called the sample autocorrelation function.

2.9. STUDENT’S ¢t DISTRIBUTION

You saw earlier that if you assume normality and you know the standard deviation
o you can determine the probability of y exceeding some value y; by calculating
the normal deviate zg = (yop — 1)/0 and thus Pr(z > z9) = Pr(y > yp) from the
tabled normal distribution. For example, suppose the level of impurity in a reac-
tor is approximately normally distributed with a mean n =4.0 and a standard
deviation o = 0.3. What is the probability that the impurity level on a randomly
chosen day will exceed 4.4? Here yp = 4.4, 7 = 4.0, and o = 0.3, so that

yow—n 44-40
= ? - =133
=Ty 03

From Table A at the end of this book you can determine that Pr(z > 1.33) =
0.0918. There is thus about a 9% chance that the impurity level on a randomly
chosen day will exceed 4.4,

In practice o is almost always unknown. Suppose, then, that you substitute in
the equation for the normal deviate an estimate s of o obtained from n observa-
tions themselves. Then the ratio

Yo—n
S

! =

has a known distribution called Student’s distribution.* Obviously a probability
calculated using the ¢ distribution must depend on how reliable is the substituted
value s. It is not surprising therefore that the distribution of + depends on the
number of degrees of freedom v = n — 1 of 5. The 7 distributions for v =1, 9,
and oo are shown in Figure 2.10.

Thus, suppose that the estimated standard deviation s was 0.3 and was based
On seven observations. Then the number of degrees of freedom would be 6

and the probability of a randomly drawn observation exceeding 4.4 would be
obtained from 44— 40
Yo—n 4=
s 0.3

'T{we { distribution was first discovered in 1908 by the chemist W. S. Gosset, who worked for the
Guiness brewery in Dublin and wrote under the pseudonym “Student.”

to
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Figure 2,10. The ¢ distribution for v =1, 9, 50.

The corresponding probability Pr(r > 1.33) when ¢ has six degrees of freedom
can be calculated by your computer or from Table El at the end of this volume.
The value of Pr(r > 1.33) is found to be about 12%, which, as might be expected,
is somewhat larger than the 9% found assuming that o was known.

As illustrated in Figure 2.10, when the number of degrees of freedom v
is small, uncertainty about s results in a greater probability of extreme devia-
tions and hence in a “heavier” tailed ¢ distribution. The following values for
Pr(t > 2) illustrate the point:

v = oc (normal distribution) Pr(t > 2) =2.3%
v=9 Pr(r > 2) =3.8%
v=1 Pris > 2) = 14.8%

Except in the extreme tails of the distribution, the normal distribution provides
a rough approximation of the 7 distribution when v is greater than about 15.

Random Sampling, Independence, and Assumptions

Random sampling is a way of physically inducing statistical independence. Imag-
ine a very large population of data with values written on tickets placed in @
lottery drum. Suppose that after the tickets were thoroughly mixed two tickets
were drawn at random. We would expect the number on the first ticket to be
statistically independent of that on the second. Thus, random sampling would
ensure the validity of what was called the IID assumption. The. obscrvations
would then be identically and independently distributed. This means that }hc
individual distributions are the same and that knowing one tells you nothing
about the others.

It would be nice if you could always believe the random sampling modfil
because this would ensure the validity of the IID assumption and produce certain
dramatic simplifications. In particular, it would endow sample statistics such s
¥y with very special properties.



,9 STUDENT'S 7 DISTRIBUTION a1
The Mean and Variance of the Average y for Independent Identically
pistributed Observations

If the random sampling model is appropriate so that the errors are IID, we have the
simple rule that ¥ varies about the population mean n with variance o%/n. Thus

0.'2
E(@) =n, V(Y) = -;1"'

[However, when observation errors are not independent but correlated, the expres-
sion for the variance of ¥ contains a factor C that depends on the degree of their
correlation, that is, V(¥) = C x (o2/n). For independent data C =1 but for
autocorrelated data it can deviate greatly from this value. If, for example, n = 10
and only the immediately adjacent observations were autocorrelated, the factor
C could be as large as 1.9 for positively autocorrelated observations or as small
as 0.1 for negatively correlated observations. (See Appendix 2A.) Thus different
degrees of lag 1 autocorrelation can change V (¥) by a factor of 19! It would be
disastrous to ignore important facts of this kind.]

Random Sampling Distribution of the Average y

To visualize what is implied by the expressions E(¥) =7 and V(3) = 0?/n,
suppose that a very large number of white tickets in a white lottery drum represent
the population of individual observations y and that this population has mean p
and variance o2. Now suppose you randomly draw out a sample of n = 10 white
tickets, calculate their average y, write it down on a blue ticket, put the blue
lfckel in a second blue lottery drum, and repeat the whole operation many many
times. Then the numbers in the blue drum, which now form the population of
averages ¥, will have the same mean 7 as the original distribution of white tickets
but with a variance ¢2/n, which is only one nth as large as that of the original
observations.

The original distribution of the individual observations represented by the
drum of white tickets is often called the parent distribution. Any distribution
%fl:]nvcd fropl t_his parent by random sampling is called a sampling distribution.
d us Q1e distribution of numbers shown on the blue tickets in the blue lottery

fum 1s called the sampling distribution of ¥.

Approach to Normality of the Sampling Distribution of 7

::’néz?;'?; r::u;'formulas for the mean and variance of ¥, we must assume the
matier Whatp Ing model is appropriate, but t!les'e fqrmulas wou}d remain true no
distribution wwasl the shape of the parent dlSt'l’lt?llthI‘l. In particular, the parent
trated jn pi ) ould not need to be normal._lf it is not norm.al,‘ then, as is illus-
the Standqrg ‘;C 2..1.1, on the random sampling model averaging not only reduces
diStribuu:m ] Cvialion by a factor of 1/4/n but also simultaneously produces a

or y that is more nearly normal. This is because of the central limit
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Figure 2.11. Distribution (b) is for the average of n = 10 observations randomly sampled from the

skewed distribution (a).

effect discussed earlier. In summary, then, on the 11D hypothesis appropriate for

random sampling:

Parent Distribution Sampling Distribution
for Observations y for Averages y
Mean n n
Variance o? o?/n
Standard deviation o o/Jn
Form of parent Any* More necarly normal than

distribution

the parent distribution

N

*This statement applies to all parent distributions commonly mel in practice. It is not true for certain
mathematical toys (e.g., the Cauchy distribution), which need not concern us here.
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2.10. ESTIMATES OF PARAMETERS

The quantity y is the average of the parli?ular sample_of observations that happens
to be available. Without further assumption there is little more you can say about
it. If, however, the observations can be regarded as a random sample from some
p(.)pulation with mean 7 and variance o2, then

1. 7 has for its mean the mean value n of the parent population and
2. 7 varies about n with standard deviation o'/./n.

Thus, as you imagine taking a larger and larger sample, ¥ tends to lie closer and
closer to 7. In these circumstances it is reasonable to regard y as an estimate of
. Similarly, it may be shown that 52 has a mean value o2 and varies about that
value also with a standard deviation proportional to 1/+/1n — 1. On the statistical
assumption of random sampling, therefore, you can regard 52 as an estimate of 02,

The problem of choosing statistics to estimate parameters in the best way
possible is complicated, depending heavily, as you might guess, on the definition
of “best.” The important point to remember is that it is the IID assumption,
appropriate to the hypothesis of random sampling, that endows estimates with
special distributional properties.

Sampling Distributions of a Sum and a Difference

Interest often centers on the distribution of the sum Y of two independently
distributed random variables y4 and yg. Let us supposé that y, has a distribution
with mean 4 and variance aﬁ and yp has a distribution with mean g and
variance or;;. What can we say about the distribution of ¥ = y4 + yz?

Again you could illustrate this question by considering lottery drums each
with appropriate populations of A and B tickets. Imagine that after each random
drawing from drum A to obtain y, another random drawing is made from drum
B to obtain yp, and the sum Y = y, + yg is written on a red ticket and put in
a.third lottery drum. After many such drawings what could you say about the
distribution of the sums written of the red tickets in the third lottery drum?

It turns out that the mean value of sum Y is the sum of the mean values of
Ya and yp:

EQY)=E(a+ys)=E(ya) + E(yg) =na +np

a?d it can be shown for independent drawings that the variance of ¥ is the sum
of the variances of ¥a and yp:

VIY)=V(ya+yp) =0} + ¥
Correspondingly, for the difference of two random variables

E(Y)=E(ys —yg) = E(ya) = E(yz) =04 — nig
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and for independent drawings
V(¥Y)=V(ya—ys)=0%+0}

The result for the difference follows from that of the sum, for if you write —yp =
Yp» then, of course, the variance does not change, V(yg) = V(yp), and thus

V(ya —¥8) = V(ya+yp) =02 + 0

These results for the sum and the difference do not depend on the form of the
parent distributions; and, because of the central limit effect, the distributions of
both sum and difference tend to be closer to the normal than are the original
parent distributions. If, then V4 and yp are independent drawings from the same
population with vanance o? or, alternatively, from different populations having
the same variance o2, the variance of the sum and the variance of the difference
are identical, that is,

V(ys + ys) = 207, V(ya —yp) = 207

2.11. RANDOM SAMPLING FROM A NORMAL POPULATION

The following important results are illustrated in Figure 2.12 on the assumption
of random sampling from a normal parent population or equivalently on the
NIID assumptions. If a random sampling of n observations is drawn from a
normal distribution with mean 5 and variance o2, then:

1. The distribution of ¥ is also normal with mean 7 and variance o?/n.

2. The sample variance s” is distributed independently of ¥ and is a scaled
x? (chi-square) distribution having v = n — 1 degrees of freedom, This is
a skewed distribution whose properties are discussed later.

3. The quantity (¥ — n)/(s//n) is distributed in a r distribution with v =
n — 1 degrees of freedom. :

In the illustration in Figure 2.12 n =5 so that v = 4. Result 3 is particularly
remarkable because it allows the deviation ¥ — 5 to be judged against an estimate
of the standard deviation s/./n obtained from internal evidence from the sample
itself. Thus, no external data set is needed to obtain the necessary Student’s
t reference distribution provided the assumption of random sampling from a
normal distribution can be made.

Standard Errors

The standard deviation of the average, s//n, is the positive square root of the
variance of the average and is often referred to as the “standard error” of the
average also the square root of the variance of any statistic constructed from a
sample of observations is commonly called that statistic’s standard error.
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Sufficiency of ¥ and s2
If the assumptions of random sampling from a normal distribution are exactly
satisfied, Flsher showed that all the information in the 5'1mp1e Yis ¥ cves Y

about 1.and o2 is contained in the two quantities ¥ and s2. These statlsucs are
then said to be jointly sufficient estimates for 7 and o2.

2.12. THE CHI-SQUARE AND F DISTRIBUTIONS

Two important distributions, again derived on the assumption of random sampling
from normal distributions, are the x2 (chi-square) distribution, from which you
can obtain the distribution of the sample variance 52, and also the F distribution
from which you can obtain the ratio of two sample variances.

The Chi-Square Distribution

Suppose that z,, 2, .. . Z, are a set of v (nu) independently distributed unit normal
deviates, each having a mean zero and a variance unity. Then their sum of squares
S 22 =22+ 22 + -+ + 22 has a distribution of special importance, called a x*
(chi-square) distribution. The number of independent squared normal variables
determines the important parameter of the distribution—the number of degrees of
freedom v. We use the symbol ~ to mean *is distributed as” so that

v

2._,2
2 u~

u=l1

means that ) ,_, z2 has a chi-square distribution (is distributed as x?) with
v degrees of freedom. Thus, the sum of squares of v independent unit normal
deviates has a chi-square distribution with v degrees of freedom.

The x2 distribution has mean v and variance 2v. It is skewed to the right, but
the skewness becomes less as v increases, and for v greater than 50 the chi-square
distribution is approximately normal. You can determine probabilities associated
with this distribution using an appropriate computer program or from the percent-
age points of the x2 distribution given in Table C at the end of this book. The curve
in Figure 2.11a is that of a x2 distribution having v = 3 degrees of freedom.

Distribution of Sample Variances Calculated from Normally Distributed
Data

The following results are true on the N1ID assumptions; specifically it is supposed
that yi, y2, ..., y, are normally, mdependent and identically distributed random
variables having mean n and variance o2. Since z, = (y, — n)/o is normally
distributed with mean zero and variance unity (a unit normal deviate), the sum of
squares Y z2 of deviations from the population mean has a chi-square distribution
with v = n degrees of freedom, that is,

}:(yu - 77)2

~~ xz
o? n
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For the “natural" variancc estimate §2, appropriate when the population mean is

known, §2 =3 (y. —m)*/n, it follows therefore that
()
ns?
o2
or, equivalently, )
3.2 ~ 'O;"Xz
n n

The much more common circumstance” is that in which » is unknown and the
sample average ¥ must be used instead of the population mean. The standardized
sum of squares of deviations from ¥ has a chi-square distribution withv =n —1
degrees of freedom. Thus

T0u=

o2 n—1

and since s2 = Y (y, — N/ (n — 1), it follows that (n — 1)s>/a® ~ x>, or,
equivalently, s* ~ [02/(n — 1)]x2_,. The distribution of s? is thus a scaled chi-
square distribution with scale factor o~ / (n-=1).

The F Distribution of the Ratio of Two Independent Sample Variances

Suppose that a sample of n, observations is randomly drawn from a normal
distribution having variance o}, a second sample of n, observations is randomly
dmwn from a second normal distribution having variance a, , So that the estimates
s; and s} of the two population vananccs have v) = ny — | and U2 =y — 1
degrees of freedom respectively. Then s /ol is dnstnbut«,d as x2 /v and s3/a3
i$ distributed as x‘, /vz, and the ratio ( x‘, / v xl,, /va) has an F distribution with
vy and vy degrees of freedom. The probabllny points for the F distribution are
given in Table D at the end of this book. Thus

or, equijvalently,

Residuals

When 1 and o2 are known, they completely define the normal distribution, and
the standardized residuals
=3 On-3) (¥n =)

*
§ S §

* The natural standard deviation has an important application discussed later.
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or equivalently the relative magnitudes of the residuals

Yi —_5'.')’2—?'-”;)’;:—:}7

from such a distribution are informationless. The other side of the coin is that,
when a departure from the hypothesis of random sampling from a normal popu-
lation occurs, these residuals can provide hints about the nature of the departure,

A First Look at Robustness

The NIID assumptions, or equivalently the assumption of random sampling from
a normal distribution, are never exactly true. However, for many important pro-
cedures, and in particular comparisons of means, the results obtained on NIID
assumptions can frequently provide adequate approximations even though the
assumptions are to some extent violated. Methods that are insensitive to spe-
cific assumptions are said to be robust to those assumptions. Thus methods of
comparing means are usually robust to moderate nonnormality and inequality of
variance. Most common statistical procedures are, however, highly nonrobust to
autocorrelation of errors. The important question of the robustness of statistical
procedures is discussed in greater detail in later chapters.

Exercise 2.11. The following are 10 measurements of the specific gravity y of
the same sample of an alloy:

Date October 8 October 9 October 10 October 11 October 12
Time AM PM AM PM AM PM AM PM. AM PM
¥ 0.36721 0.36473 0.36680 0.36487 0.36802 0.36396 0.36758 0.36425 0.36719 0.36333

(a) Calculate the average y and standard deviation s for this sample of n = 10
observations.

(b) Plot the residuals y — ¥ in time order.

(c) It is proposed to make an analysis on the assumption that the 10 observa-
tions are a random sample from a normal distribution. Do you have any
doubts about the validity of this assumption?

2.13. THE BINOMIAL DISTRIBUTION

Data sometimes occur as the proportion of times a certain event happens. On spe-
cific assumptions, the binomial distribution describes the frequency with which
such proportions occur. For illustration, consider the strategy of a dishonest gam-
bler Denis Bloodnok, who makes money betting with a biased penny that he
knows comes up heads, on the average, 8 times out of 10. For his penny the
probability p of a head is 0.8 and the probability g =1 — p of a tail is 0.2.
Suppose he bets at even money that of n = 5 tosses of his penny at least four
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will come up heads. To make his bets appropriately, Bloodnok calculates the
probability, with five tosses, of no heads, one head, two heads, and so on. With
y representing the number of heads, what he needs are the n + 1 = six values:

Pr(y = 0),Pr(y = 1), ..., Pr(y = 5)

Call the tossing of the penny five times a rial and denote the outcome by listing
the heads (H) and tails (T) in the order in which they occur. The outcome y = 0
of getting no heads can occur in only one way, so

Pr(y=0)=P(TTTTT)=¢gxqgxqxqxqg=g"=02°=0.00032

The outcome of just one head can happen in five different ways depending on
the order in which the heads and tails occur, Thus

Pry=1)=Prf(HTTTT)+P(THTTT)+P(TTHTT)
+P(TTTHT)+P(TTTT H)

and Pr(y =1) =5pq* =5 x 0.8 x 0.2* = 5 x 0.000128 = 0.00640. The out-
come of just two heads can happen in 10 different ways (orderings):

HHTTT) MHTHTT) HTTHT) MHTTTH) (THHTT)
(THTHT) (THTTH) (TTHHT) (TTHTH) (TTTHH)

Thus Pr(y =2) = 10p2q3 = 10 x 0.8% x 0.23 = 0.05120, and so on. Evidently,
to obtain Pr(y) for any y, you must

1. calculate the probability p¥q"~Y of y heads and n — y tails occurring in
some specific order and

2. multiply by the number of different orderings in which y heads can occur
in n throws: This is called the binomial coefficient and is given by

(n) _ n!

y/ ytn—=y)!

where n! is read as n factorial and is equal to n x (n —1) x (n —2) x
e x 2 x 1.

_ Thus the binomial distribution showing the probability of obtaining y heads
In some order or other when there are n throws is

n! v n—y
n_y)!P q

Pr(y) = (3) P = —
y yi(
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Table 2.2. Binomial Distribution for y Heads in n Trials Whenp =0.8 andn =8§

5 5!
Number of Heads y (;) = }'(5_-\)'. prg"? Pr(y)
0 1 0.00032 0.00032
1 S 0.00128 0.00640
2 10 0.00512 0.05120
3 10 0.02048 0.20480
4 5 0.08192 0.40960
5 ! 0.32768 0.32768
1.00000

For Bloodnok's problem the distribution of the number of heads is calculated in
Table 2.2 and plotted in Figure 2.13a.

In this way Bloodnok calculates that using his biased penny the probability of
at least four heads [given by Pr(4) + Pr(5)] is about 0.74. For the fair penny
Pr(4) + Pr(5) yields a probability of only 0.19 (see Fig. 2.13b). Thus a wager at
even money that he can throw at least four heads appears unfavorable to him.
But by using his biased penny he can make an average of 48 cents for every
dollar bet. (If he bets a single dollar on this basis 100 times, in 74 cases he will
make a dollar and in 26 cases he will lose a dollar. His overall net gain is thus
74 — 26 = 48 dollars per 100 bet.)

Exercise 2.12. Obtain Pr(y) for y =0, 1,2,...,5 for five fair pennies and con-
firm that Pr(4) 4+ Pr(5) = 0.19. What would Bloodnok’s average profit or loss be
if we accepted his wager but made him use fair pennies?

Answer: A loss of 62 cents for every dollar bet.

Exercise 2.13. Using a standard deck of 52 cards, you are dealt 13. What is the
probability of getting six spades? Answer: 0.13.

General Properties of the Binomial Distribution

The binomial distribution might be applied to describe the proportion of animals
surviving a certain dosage of drug in a toxicity trial or the proportion of manu-
factured items passing a test in routine quality inspection. In all such trials there
are just two outcomes: head or tail, survived or died, passed or failed. In general,
it is convenient to call one outcome a success and the other a failure. Thus we
can say the binomial distribution gives the probability of y successes out of a
possible total of n in a trial where the fixed probability of an individual success
is p and of a failureis ¢ =1 — p.
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Figure 2.13. Binomial distributions for different choices. of p: (a) p = 0.8 and n = 5 (Bloodnok's

distribution); (b) p = 0.5 and n = 5 (distribution for fair penny).
Mean and Variance of the Binomial Distribution
The mean and variance of the binomial distribution are

n=np, o’=npq

Thus the standard deviation is o = ./fpq. For the gambler’s trial of five tosses
of the biased penny n =5 x 0.8 =4.0 and o = /5 x 0.8 x 0.2 = 0.89, as illus-
trated in Figure 2.13a.

Distribution of the Observed Proportion of Successes y /n

In some cases you may wish to consider not the number of successes but the
proportion of successes y/n. The probability of obtaining some value y/n is the
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same as the probability of obtaining y, so

()= (5) e

The distribution of y/n is obtained simply by rescaling the horizontal axis of
the binomial distribution Pr(y). Thus Figure 2.14a shows the distribution of y

r)=l16
-—
=179
0.2+
) 0.1+
o
]

$ 4t 1 1t t 1
0123 456 78 9101112131415 1617 18 1920

y—

(a)

n=028
—
a=0.089
02

T 01

>

o

1 1 i | | |

0 01 02 03 04 05 06 07 08 09 1.0

Figure 2,14, Normal approximation to binomial: (a) number of successes; (b) proportion of suc-
cesses; (¢) normal approximalion showing tail area with Yates adjustment.
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Figure 2.14. (continued)

successes for p = 0.8 and n = 20. Figure 2.14b shows the distribution of the
proportion p = y/n of successes using the same ordinates. The observed pro-
portion y/n is p, an estimate of the probability p.*

Approach to Normality of the Binomial Distribution

In Figures 2.14a,b,c the continuous line shows a normal distribution having the
same mean and standard deviation as the respective binomial distribution. In
general, the normal approximation to the ordinates of the binomial distribution
steadily improves as n increases and is better when p is not near the extremes
of zero or unity. A rough rule is that for n > 5 the normal approximation will
be adequate if the absolute value of (1/4/n)(/q/p — «/p/q) is less than 0.3.

Yates Adjustment

In the above a continuous normal distribution is being used to approximate a
discrete binomial distribution. A better normal approximation for Pr(y > yp) is
obtained by adding % to the value of yg. Thus, for a binomial distribution with p =
0.5 and n =20, Pr(y > 14) = 2.06%, The approximately normal distribution
using the same mean n = 10.0 and standard deviation 2.24 gives Py(y > 14) =
3.18%. A much better approximation is provided with Yates adjustment P(y >

14.5) = 2.21%. If you imagine Figure 2.14¢ drawn as a histogram, you can easily
see why.

* A caret over a symbol or group of symbols means “an estimate of." Thus j is read “an estimate
or p."
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2.14. THE POISSON DISTRIBUTION

If in the expression for the binomial distribution

n!

Pr(y) = { ' } prq"

yin—1y)

the quantity p is made smaller and smaller ut the same time as n is made larger
and larger so that n = np remains finite and fixed, it turns out that Pr(y) tends
closer and closer to the limit,

e"nn}'
y!

-

Pr(y) =

This limiting distribution is called the Poisson distribution after its discoverer.
The distribution has the property that the probability of a particular value depends.
only on the mean frequency 7. For the Poisson distribution 7 is also the variance
of the distribution. Thus 7 is the only parameter of the distribution. This limiting
distribution is of importance because there are many everyday situations, such as
the occurrence of accidents, where the probability p of an event at a particular
time or place is small but the number of opportunities » for it to happen are large.

In general let y be the intensity of an event, that is, the count of the number
of times a random event occurs within a certain unit (breaks per length of wire,
accidents per month, defects per assembly). Then, so long as this intensity is not
influenced by the size of the unit or the number of units, the distribution of y is
that of the Poisson distribution with n the mean number of counts per unit..

To illustrate, when Henry Crun is driving his car, the probability that he will
have an accident in any given minute is small. Suppose it is equal to p = 0.00042.
Now suppose that in the course of one year he is at risk for a total of n = 5000
minutes. Then, although there is only a small probability of an accident in a
given minute, his mean frequency of accidents per year is np = 2.1 and is not
small. If the appropriate conditions* apply his frequency of accidents per year
will be distributed as a binomial distribution with p = 0.00042 and n = 5000,
shown in the first row of Table 2.3.

Thus you see that in 12.2% of the years (about 1 in 7) Henry would have no
accidents. In 25.7% of years (about | in 4) he would have one accident, and so
on. Occasionally, specifically in (4.2 + 1.5+ 0.4 + 0.1)% = 6.2% of the years
he would have five accidents or more.

Now consider the record of his girlfriend Minnie Bannister, who is a better
driver than Henry. Minnie’s probability p’ of having an accident in any given
minute is p' = 0.00021 (half that of Henry's), but since she drives a total of
10,000 minutes a year (twice that of Henry), her mean number of accidents per
year is 5y = n’'p’ = 2.1, the same as his. If you study the individual frequencies

* An important assumption unlikely to be true would be that the probability of an accident in any
given minute remains constant, irrespective of traffic density.
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of accidents in Table 2.3 you will see that not only Minnie’s mean but also Min-
nie’s distribution of accidents is virtually the same as Henry’s. Her distribution
of accidents per year calculated from the binomial formula with n' = 10, 000 and
p’ = 0.00021 is shown in the second row (b) of Table 2.3.

For both Minnie and Henry the mean frequency of accidents per year is n =
2.1 Now consider the same probabilities calculated from the Poisson distribution.
They are

CPr(0) =e ' =0.12246,  Pr{l) = ¢~*! x 2.1 = 0.25716
Pr(2) = e~2! x (2.1%)/2 = 0.27002. etc.

and are given in Table 2.3(c) and plotted in Figure 2.154. You will see that they
approximate very closely the values calculated from the binomial distributions,
The limiting Poisson distribution is important because it can approximate many
everyday situations where the probability p of an event at a particular time or
place is small but the number of opportunities »n for it to happen is large.

For example, consider the problem faced by a manufacturer of raisin bran
cereal who wants to ensure that on the average 90% of spoonfuls will each contain
at least one raisin. On the assumption that the raisins are randomly distributed in
the cereal, to what value should the mean 5 of raisins per spoonful be adjusted
to ensure this? To solve this problem, imagine a spoonful divided up into raisin-
sized cells, the number n of cells will be large, but the probability of any given
cell being occupied by a raisin will be small. Hence, the Poisson distribution

"1

2.1
o=V2.1=1.45
-

l.
0123458678
(a)

0

=10
; oc=Y10=3.16

[ ———

01234 56 7 89 10111213141516 1718 1920-
(b)

Figure 2.15. Poisson distributions for (a) # = 2.1 and (b) n = 10.
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should supply a good approximation. The required probability is 1 — probability
of no raisins, Thus you require that 1 — ¢~ = 0.90, that is, n = log, 10 = 2.3.
Hence the manufacturer should ensure that on the average there are 2.3 raisins
in every spoonful.

When 7 Is Not Too Small, the Poisson Distribution Can Be Approximated
by the Normal Distribution

As the mean frequency (count) increases, the Poisson distribution approaches the
normal distribution quite quickly. Thus the Poisson distribution with = o2 = 10
in Figure 2.15b has ordinates well approximated by the normal distribution. When
employing the normal approximation to compute the tail areas of a Poisson
distribution Yates adjustment should be used, that is, you use yg 4+ 0.5 instead
of y, in the normal approximation. For example, Pr(y > 13) is approximated by
the area under the normal curve to the right of y = 13.5.

Additive Property of the Poisson Distribution

The Poisson distribution has an important additive property. If y;, ¥2, ..., yi are
observations from independent Poisson distributions with means 1y, 73, ..., M,
then Y = y; + y2 + - - - + yi also has a Poisson distribution with mean n, + n; +
R o/

Sum of Normalized Squared Deviations Approximately Distributed
as Chi Square

If y follows the Poisson distribution with mean # and n is of moderate size
(say greater than 5), the quantity (y — n)/./7 is very approximately a standard
normal deviate and its square (y — 7)2/n is distributed approximately as x? with
one degree of freedom. It follows that if yy, y2,..., yx are k observations from
independent Poisson distributions with means 7y, 72, ..., 7 then

k. .

j—m)? _ 2

2 TN
=

where the notation & means ‘is approximately distributed as’.
In words, the sum of the observed minus the expected frequencies squared

divided by the expected frequerncy is approximately distributed as chi square with
k degrees of freedom.

APPENDIX 2A. MEAN AND VARIANCE OF LINEAR COMBINATIONS
OF OBSERVATIONS

Suppose y,, y2, y3 are random variables (not necessarily normal) with means
M, N2, N3, variances o, 07, a3, and correlation coefficients p;2, p13, p23. The
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mean and the variance of the linear combination Y = ay, 4+ a3y2 + a3y3, where
ay, az, a3 are any positive or negative constants, are, respectively,

E(Y) =am +azn: + axns
and
V(Y) = alo} + ajo} + a303 + 2a1a:0102012 + 241430103013 + 22030203023

These formulas generalize in an obvious way. For a linear combination ¥ =
3 r_ja;yi of n random variables

E(Y)= Zamf

i=1

and, V(Y) will have n “squared” terms like a;"of and n(n — 1)/2 cross-product
terms like 2a;a;0;0;p;;. Specifically

VY) = Zaza“-{-ZZ Z a;a;0;0;p;j
i=l j=i+]

Notice that o;0;p;; is the Cov(y;, ¥;), so that you can also write

V() = Zan(y,) +zz Za,a, Cov(y;, ¥;)

i=1 j=il

Variance of a Sum and a Difference of Two Correlated Random Variables

Since a sum y, + y; can be written as (+1)y; + (41)y; and a difference y; — y
as (+Dy + (=Dy,

V(i +y2) = 0 + 0f +2p 120102
V(y; — ») = o] + 07 —2pnaio;

You will see that, if the correlation between y; and y, is zero, the variance of
the sum is the same as that of the difference. If the correlation is positive, the
variance of the sum is greater; if the correlation is negative, the opposite is true.

No Correlation

Consider the statistic Y,

Y =ay1+azya+-+-+anyn
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a linear combination of n random variables yy,y,,..:, y» each of which is
assumed uncorrelated with any other; then

2 2 2
V{Y) = (112012 +a§ai +---+a,o,

No Correlation, Equal Variances

If, in addition, all the variances are equal, £(Y) remains as before and

V() =(al+a}+---+a)o’

Variance of an Average of n Random Variables with All Means Equal to 5
and All Variances Equal to a2

Since

y + i el ol / 1 1 1
T LI R
n n. n

r"

y=
n

the average is a linear combination of observations with all the a's equal to 1/n,
Thus, given the assumptions, £(y) = n and for the variance of the average ¥,

v =(L+ls i l)orotpr T

)y = Lt — e — g = —0" = —

) n*  n? n? n? n

the formula for the variance of the average used earlier.

Variance of the Average y for Observations That Are Autocorrelated
at Lag 1

As illustrated earlier, the linear statistic Y = ) _;_, a;y; has expectation (mean)

i
EY)=) am
i=l

and variance

n n n
V() = Zafaﬁ +2Z Z 0;a;0;0;p;j
i=1

i=1 j=i+l
Suppose now that all the observations y;, ya, ..., y. have a constant variance o2

a.nd the same lag 1 autocorrelation p; ;41 = p;. Suppose further that all correla-
tions at greater lags are zero. Then

Y=ny=yi+yr+- 4
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and making the necessary substitutions, you get

2
Ve =Cx =

where 2 :

It may be shown that for the special case being considered p; must lie between
—0.5 and +0.5. Consequently C lies between (2n — 1)/n and 1/a. Thus, for
n = 10, the constant C lies between 1.9 and 0.1, (A range of nineteen!) Now
for observations taken in sequence serial dependence is almost certain, so the
consequence of ignoring it can be disastrous. (see e.g., Box and Newbold, (1971)).
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QUESTIONS FOR CHAPTER 2

1. What are a dot diagram, a histogram, and a probability distribution?

2. What is meant by a population of observations, a sample of observations, a
random drawing from the population, and a random sample of observations?
Define population mean, population variance, sample average, and sample
variance.

3. Distinguish between a standard deviation and a standard error.
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4.
5.
6.
7.
8.
9.

10.

11.

12.

13.

14.

15.

What is the central limit effect and why is it important?

What does a normal distribution look like and why is it important?
What two parameters characterize the normal distribution?

What is meant by the IID assumption and the NIID assumption?
When must a ¢ distribution be used instead of a normal distribution?

What are statistical dependence, randomness, correlation, covariance, auto-
correlation, random sampling, and a sampling distribution?

What are the properties of the sampling distribution for the average ¥ from
a nonnormal distribution? Discuss and state your assumptions?

What are the sampling distributions of ¥, s, and t = (¥ — n)/(s/+/n) from
a normal distribution. Discuss and state your assumptions,

What are the formulas for the expectation and variance for the sum and for
the differences of two random variables? How might these formulas be used
to check for lagl autocorrelation.

Consider the second difference Y = y; — 2y;-1 + ¥;-2. What is the variance
of Y if successive observations y;,i = 1,2, ..., n, all have the same variance
and are (a) independent and (b) autocorrelated with p = 0.2?

Two instruments used to measure a certain phenomenon give separate res-
ponses y; and y, with variances 0’| and a'2;. What are two ways to determine
whether these instrumental responses are correlated? Answer: (a) Estimate p
from repeated pairs of y; and y, and (b) use the sums and difference of the
responses.

What is meant by the natural variance and natural standard deviation of a
sample of observations?

PROBLEMS FOR CHAPTER 2

Whether or not specifically asked, the reader should always (1) plot the data in
any potentially useful way, (2) state the assumptions made, (3) comment on the
appropriateness of the assumptions, and (4) consider alternative analyses.

1.

2.

Given the following observations: 5, 4, 8, 6, 7, 8. Calculate (a) the sample
average, (b) the sample variance, and (c) the sample standard deviation.

The following are recorded shear strengths of spot welds (in pounds): 12,560,
12,900, 12,850, 12,710. Calculate the average, sample variance, and sample
standard deviation.
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3. Four ball bearings were taken randomly from a production line and their
diameters measured. The results (in centimeters) were as follows: 1.0250,
1.0252, 1.0249, 1.0249. Calculate the average, sample variance, and sample

standard deviation,

4. (a) The following are results of fuel economy tests (miles per gallon) obtained
from a sample of 50 automobiles in 1975:

17.74
15.88
14.57
17.13
12.57

13.67
14.94
14.93
11.52
13.46

12.17
16.10
12.90
14.46
13.15

14.23
13.66
14.01
17.46
13.70

12.22
16.74
12.81
14.20
16.53

15.81
9.79
14.43
14.67
14.98

13.89
17.54

14.95.

16.90
13.60

16.63.

13.08
16.35
15.92
14.57

16.47
17.43
16.25
11.34
13.34

11.40
14.57
15.65
16.02
15.72

Plot the histogram of these data and calculate the sample average and

sample standard deviation.

(b) The following 50 results were obtained in 1985:

24.57
22.19
25.10
25.12
21.67

28.27
25.18
23.59
27.18
25.46

24.79
24.37
28.03
25.27
22.15

26.57
27.42
26.98
24.69
28.84

25.84
22.74
29.34
27.65
26.32

24.35
23.21
25.27
23.05

2542

2535
23.38
2441
27.95
24.05

30.04
25.10
25.84
23.37
21.76

Plot the histogram of these data and calculate the sample average and
sample standard deviation. Considering both data sets, comment on any
interesting aspects you find. Make a list of questions you would like
answered that would allow you to investigate further.

5. If a random variable has a normal distribution with mean 80 and standard
deviation 20, what is the probability that it assumes the following values?

(a) Less than 77.4
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7.

10.

(b) Between 61.4 and 72.9

(¢) Greater than 90.0

(d) Less than 67.6 or greater than 88.8
(e) Between 92.1 and 95.4

(H) Between 75.0 and 84.2

(g) Exactly 81.7

Suppose the daily mill yields at a certain plant are normally distributed with
a mean of 10 tons and a standard deviation of 1 ton. What is the prob-
ability that tomorrow the value will be greater than 9.5? To obtain your
answer, assume that the observations behave as statistically independent ran-
dom variables.

Four samples are taken and averaged every hour from a production line and
the hourly measurement of a particular impurity is recorded. Approximately
one out of six of these averages exceeds 1.5% when the mean value is
approximately 1.4%. State assumptions that would enable you to determine
the proportion of the individual readings exceeding 1.6%. Make the assump-
tions and do the calculations. Are these assumptions likely to be true? If not,
how might they be violated?

. Suppose that 95% of the bags of a certain fertilizer mix weigh between 49

and 53 pounds. Averages of three successive bags were plotted, and 47.5%
of these were observed to lie between S1 and X pounds. Estimate the value
of X. State the assumptions you make and say whether these assumptions
are likely to be true for this example.

For each sample of 16 boxes of cereal an average box weight is recorded.
Past records indicate that 1 out of 40 of these averages is less than 8.1
ounces. What is the probability that an individual box of cereal selected at
random will weigh less than 8.0 ounces? State any assumptions you make.

The lengths of bolts produced in a factory may be taken to be normally
distributed. The bolts are checked on two *go-no go” gauges and those
shorter than 2.9 or longer than 3.1 inches are rejected,

(a) A random sample of 397 bolts are checked on the gauges. If the (true
but unknown) mean length of the bolts produced at that time was 3.06
inches and the (true but unknown) standard deviation was 0.03 inches,
what values would you expect for n;, the number of bolts found to be
too short, and n3, the number of bolts found to be too long?

(b) A random sample of 50 bolts from another factory are also checked.
If for these ny = 12 and na = 12, estimate the mean and the standard
deviation for these bolts. State your assumptions,
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13.

14.

2 BASICS (PROBABILITY. PARAMETERS, AND STATISTICS)

The mean weight of items coming from a production line is 83 pounds.
On the average, 19 out of 20 of these individual weights are between 81
and 85 pounds. The average weights of six randomly selected items are
plotted. What proportion of these points will fall between the limits 82 and
84 pounds? What is the precise nature of the random sampling hypothesis
that you need to adopt to answer this question? Consider how it might be
violated and what the effect of such a violation might be on your answer.

After examination of some thousands of observations a Six Sigma Black Belt
quality engineer determined that the observed thrusts for a certain aircraft
engine were approximately normally distributed with mean 1000 pounds and
standard deviation 10 pounds. What percentage of such measured thrusts
would you expect to be

(a) Less than 985 pounds?
(b) Greater than 1020 pounds?
(c) Between 985 and 1020 pounds?

On each die in a set of six dice the pips on each face are diamonds. It is
suggested that the weight of the stones will cause the “five” or “six™ faces
to fall downward, and hence the “one” and “two” faces to fall upward, more
frequently than they would with fair dice. To test this conjecture, a trial is
conducted as follows: The throwing of a one or two is called a success. The
six dice are thrown together 64 times and the frequencies of throws with
0,1,2,...,6 successes summed over all six pairs are as follows:

Successes out of six (numberofdice 0 1 2 3 4 5 6
showing a one or two)
Frequency 0O 4 19 15 17 7 2

(a) What would be the theoretical probability of success and the mean and
variance of the above frequency distribution if all the dice were fair?

(b) What is the empirical probability of success calculated from the data and
what is the sample average and variance?

(¢) Test the hypothesis that the mean and variance have their theoretical
values.

(d) Calculate the expected frequencies in the seven “cells” of the table on
the assumption that the probability of a success is exactly %

(e) Can you think of a better design for this trial?

The level of radiation in the control room of a nuclear reactor is to be
automatically monitored by a Geiger counter. The monitoring device works
as follows: Every tenth minute the number (frequency) of “clicks” occurring
in ¢ seconds is counted automatically. A scheme is required such that if the
frequency exceeds a number ¢ an alarm will sound. The scheme should have
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15.

the following properties: If the number of clicks per second is less than 4,
there should be only 1 chance in 500 that the alarm will sound, but if the
number reaches 16, there should be only about 1 change in 500 that the alarm
will not sound. What values should be chosen for r and ¢? Hint: Recall that
the square root of the Poisson distribution is roughly normally distributed
with standard deviation 0.5. [Answer: t = 2.25, ¢ = 20 (closest integer to

20.25).]

Check the approximate answer given for problem 14 by actually evaluating
the Poisson frequencies.






CHAPTER3

Comparing Two Entities: Reference
Distributions, Tests, and Confidence
Intervals

In this chapter we discuss the problem of comparing two entities experimentally
and deciding whether differences that are found are likely to be genuine or merely
due to chance. This raises important questions concerning the choice of relevant
reference distributions with which to compare apparent differences and also the
uses of randomization, blocking, and graphical tests.

3.1. RELEVANT REFERENCE SETS AND DISTRIBUTIONS

In the course of their scientific careers Peter Minerex and his wife Rita Stove-
ing had to move themselves and their family more than once from one part
of the country to another. They found that the prices of suitable houses varied
considerably in different locations. They soon determined the following strategy
for choosing a new house. Having found temporary accommodation, they spent
some time merely looking at houses that were available. In this way they built
up in their minds a “reference set™ or *reference distribution” of available values
for that particular part of the country. Once this distribution was established,
they could judge whether a house being considered for purchase was modestly
priced, exceptionally (significantly) expensive, or exceptionally (significantly)
Inexpensive.

The method of statistical inference called significance testing (equivalently
hypothesis testing) parallels this process. Suppose an investigator is considering a
particular result apparently produced by making some experimental modification
to a system., He or she needs to know whether the result is easily explained by

Statistics for Experimenters, Second Edition. By G. E. P. Box, J. S. Hunter, and W. G. Hunter
Copytight ® 2005 John Wiley & Sons, Inc;
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mere chance variation or whether it is exceptional, pointing to the effectiveness
of the modification. To make this decision, the investigator must in some way
produce a relevant reference distribution that represents a characteristic set of
outcomes which could occur if the modification was entirely withous effect. The
actual outcome may then be compared with this reference set. If it is found to
be exceptional, the result is called statistically significant. In this way a valid
significance test may be produced.

Validity

The analogy with pricing a house points to a very important consideration:
Minerex must be sure that the reference set of house prices that he and his wife
are using is relevant to their present situation. They should not, for instance, use
a reference set appropriate to their small country hometown if they are look-
ing for a house in a metropolis, The experimenter must be equally discerning
because many of the questions that come up in this and subsequent chapters turn
on this issue.

In general, what is meant by a valid significance test is that an observed
result can be compared with a relevant reference set of possible outcomes. If the
reference set is not relevant, the test will be invalid.

The following example concerns the assessment of a modification in a manu-
facturing plant. The principles involved are of course not limited to this applica-
tion and you may wish to relate them to an appropriate example in your own field.

An Industrial Experiment: Is the Modified Method (B) Better Than the
Standard Method (A)?

An experiment was performed on a manufacturing plant by making in sequence
10 batches of a chemical using a standard production method (A) followed by 10
batches using a modified method (B). The results are given in Table 3.1. What
evidence do the data provide that method B gives higher yields than method A?

To answer this question, the experimenters began very properly by plotting the
data as shown in Figure 3.1 and calculating the averages obtained for methods
A and B. They found that

¥, =8424,  Fy=8554

where you will recall the bar over the symbol y is used to denote an arithmetic
average. The modified method thus gave an average that was 1.3 units higher—a
change that although small could represent significant savings. However, because
of the considerable variability in batch to batch yields, the experimenters worried
whether they could reasonably claim that new process B was better or whether the
observed difference in the averages could just be a chance event. To answer this
question, they looked at the yields of the process for the previous 210 batches.
These are plotted in Figure 3.2 and recorded in Table 3B.1 at the end of this
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Yield

92

80

86

84

82

80

Table 3.1. Yield Data from an Industrial Experiment

Time Order Method Yield
1 A 89.7
2 A 814
3 A 84.5
4 A 84.8
5 A 87.3
6 A 79.7
7 A 85.1
8 A 81.7
9 A 83.7
10 A 84.5
11 B 84.7
12 B 86.1
13 B 83.2
14 B 91.9
15 B 86.3
16 B 79.3
17 B 82.6
18 B 89.1
19 B 83.7
20 B 88.5
¥4 =84.24 yg =85.54
Ya—Y¥a =130
Process A Process B
B °
)
o
| [ J
[
- ° ]
o ® ¢ ° °
— - .
L
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e
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11 1213 14 15§16 17 18 19 20
Time order

Figure 3.1. Yield values plotted in time order for comparative experiment.
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Figure 3.2, Plot of 210 past observations of yield from indusirial process.
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Figure 3.3.- Reference distribution of 191 differences between averages of adjacent sets of 10
observations.

book. They used these 210 yield values to determine how often in the past had
differences occurred between averages of successive groups of 10 observations
that were at least as great as 1.30. If the answer was “frequently,” the investigators
concluded that the observed difference could be readily explained by the ordinary
chance variations in the process. But if the answer was “rarely,”™ a more tenable
explanation would be that the modification has indeed produced a real increase
in the process mean.

The 191 differences between averages of two successive groups of 10 obser-
vations* are plotted in Figure 3.3 and recorded in Table 3B.2. They provide a rel-
evant reference set with which the observed difference of 1.30 may be compared.

It is seen that rather rarely, specifically in only nine instances, do the differ-
ences in the reference set exceed 4 1.30, the difference observed in the actual trial.

*These )91 differences were computed as follows. The first, —0.43, was obtained by subtracting
the average 83.94 of batches | to 10 from average 83.51 of batches 11 to 20. This calculation was
repeated using the averages calculated from batches 2 to 11 and 12 to 21 and so on through the data
of Table 3.2. ‘
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The “null” hypothesis, which would make the observed difference a member of
the reference set, is thus somewhat discredited. In statistical parlance the inves-
tigators could say that, in relation to this reference set, the observed difference
was statistically significant at the 9/191 = 0.047 level of probability or, more
simply stated, at the 4.7% significance level.

This test using the external reference distribution has appeal because it assumes
very little. In particular, it does not assume normality or that the data are inde-
pendent (and in particular not autocorrelated). It supposes only that whatever
mechanisms gave rise to the past observations were operating during the plant
trial. To use an external reference distribution, however, you must have a fairly
extensive set of past data that can reasonably be regarded a typifying standard
process operation.

A Recognizable Subset?

One other important consideration in sceking an appropriate reference set is that
it does not contain one or more recognizable subsets. Suppose that after more
careful study of the 210 previous data in the industrial experiment it was found,
for example, the first 50 values were oblained whén the process was run with
a different raw material; then this would constitute a recognizable subset which
should be omitted from the relevant reference set.

Similarly, if Peter and Rita were to be relocated, say, in Florida, they might
decide that houses that did not have air conditioning were a recognizable subset
that should be excluded from their reference set. Later in this chapter you will
see how you might tackle the problem when you have no external reference
distribution. But there you will also find that the importance of using a relevant
reference set which does not contain recognizable subsets still applies.

Exercise 3.1. Suppose that the industrial situation was the same as that above
except that only 10 experimental observations were obtained, the first 5 with
method A (89.7, 81.4, 84.5, 84.8, 87.3) and the next 5 with B (80.7, 86.1,
82.7, 84.7, 85.5). Using the data in Table 3B.1, construct an appropriate ref-

erence distribution and determine the significance associated with ¥, — 3, for
this test,

Answer: 0.082.

Exercise 3.2. Consider a trial designed to compare cell growth rate using a
standard way of preparing a biological specimen (method A) and a new way
(method B). Suppose that four trials done on successive days in the order A,
A,. B, B gave the results 23, 28, 37, 33 and also that immediately before this
trial a series of preparations on successive days with method A gave the results
25, 23, 27, 31, 32, 35, 40, 38, 38, 33, 27, 21, 19, 24, 17, 15, 14, 19, 23, 22.
Using an external reference distribution, compute the significance level for the

null hypothesis 74 = 75 when the alternative is 73 > 154. Is there evidence that
B gives higher rates than A.
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Answer: The observed significance level is 0/17 = 0. Evidence is that B gives
higher growth rates.

Random Samples from Two Populations

A customary assumption is that a set of data, such as the 10 observations from
method A in the plant trial, may be thought of as a random sample from a
conceptual population of observations for method A. To visualize what is being
assumed, imagine that tens of thousands of batch yields obtained from standard
operation with method A are written on cards and placed in a large lottery drum,
as shown diagrammatically at the top of Figure 3.4. The characteristics of this
very large population of cards are represented by the distribution shown in the
lower part of the same figure. On the hypothesis of random sampling the 10
observations with method A ‘would be thought of as 10 independent random
drawings from lottery drum A and hence from distribution A. In a similar way
the observations from modified method B would be thought of as 10 random
drawings from lottery drum B and hence from population B.

A null hypothesis that you might wish to test is that the modification is entirely
without effect. If this hypothesis is true, the complete set of 20 observations can be
explained as a random sample from a single common population. The alternative
hypothesis is that the distributions from which the two random samples are drawn,

(a2 gl = ro s manfan g
Hypothetical C; 87.3 Hypothetical
population A iﬁ‘@ population B
(standard method) {modified method)
Sample A
)
S0 90
Ng —»
Na —» N 75 —
Ya—
80 80
Hypothetical probabllity Available sample Hypothetical probability Available sample
distribution characterizing from population A distribution characterizing  from population 8
population A population 8

Figure 3.4. Random sampling from two hypothetical distributions.
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though otherwise similar, have different means n, and 1. (You should note that
neither distribution A nor distribution B is necessarily normal.)

Why It Would Be Nice If We Could Believe the Random Sampling Model

The assumption that the data can be represented as random samples implies the
y’s are independently distributed about their respective means. Thus the errors
Y1 = NAs Y2 = NAs s Y10 = DA Y11 = 1By Y12 — B+ -+ -, Y20 — Np could be sup-
posed to vary independently of one another and in particular the order in which
the runs were made would have no influence on the results.

Industrial Experiment: Reference Distribution Based on the Random
Sampling Model

Suppose for the industrial example that you had no external reference distribution
and the only data available were the two sets of 10 yields obtained from methods
A and B given in Table 3.1. Suppose you assumed that these were random
samples from populations of approximately the same the form (and in particular
the same variance o2) but with possible different means 14 and ng. Then the
following calculations could be made.

Calculation of the Standard Error of the Differences in Averages

If the data were random samples with n4 = 10 observation from the first popula-
tions and ng = 10 observations from the second, the variances of the calculated
averages would be
2 2
g o
Vv = —, V(yp) = —
(¥4) - (¥s) "

Also, y, and ¥ would be distributed independently, so that

2 2
~ log a 1 1
V@ —Fa)=—+— =0’ (——+—)
na Np na ng

Thus the standard deviation of the conceptual distribution of the difference of

averages would be
/ 1 1
V —_ — — —
VVQGA—Yp)=0 na + na

You will also remember that the square root of the variance of a statistic is often
called the standard error of that statistic.

Even if the distributions of the original observations had been moderately non-
normal, the distribution of the difference ¥ — ¥, between sample averages with
ng = na = 10 would be expected to be nearly normal because of the central limit
effect. On this assumption of random sampling and denoting the true population
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difference by § = ng — na.

— (Fp—¥a)—8
aJl/ng+1/n,

would be approximately a normal deviate.

Estimating the Variance o from the Samples

Suppose now that the only evidence about the variance o2 is from the ns = 10
observations from method A and the ng = 10 observations from method B. These
sample variances are

D 0a=3a 75784

.9

4 = = 8.42
54 IIA—] 9

, (2 —¥8°  119.924
s%,:z o PO _3m

ng— 1 9

On the assumption that the two population variances for methods A and B are to
an adequate approximation equal, these estimates may be combined to provide
a pooled estimate s* of this common o2, This is done by adding the sums of
squares of the errors and dividing by the sum of the degrees of {reedom,

2 2 A=TF+ D s —TFe)? 75784+ 119.924

= 10.
* ng+ng=—2 18 9.87

On the assumption of random normal sampling, s? provides an estimate of o2
with nq +npg — 2 = 18 degrees of freedom distributed independently of ¥z —
¥ 4. Substituting the estimate s for the unknown @, you obtain

[ = (Yp—¥a)—9
s/l /ng +1/n,

in which the discrepancy [(7, — ¥4) — 8] is compared with the estimated stan-
dard error of ¥z — V4. On the above assumptions, then, this quantity follows a
t distribution with v =ng 4+ n4 — 2 = 18 degrees of freedom.

For the present example ¥, — ¥4 = 1.30 and s4/1/ns + 1/ng = 1.47. The
significance level associated with any hypothesized difference 8 is obtained by
referring the statistic

o 1.30 = &y

07 147
to the ¢ table with 18 degrees of freedom. In particular (see Table 3.2), for the
null hypothesis 8y = 0, to = 1.30/1.47 = 0.88 and Pr(r > 0.88) = 19.5%. This

differs substantially from the value of 4.7% obtained from the external reference
distribution. Why?
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Table 3.2. Calculation of Significance Level Based on the Random Sampling
Hypothesis

Method A Method B ng=10 ng =10

89.7 84.7 Sum = 842.4 Sum = 855.4
81.4 86.1 Average y, = 84.24 Average ¥p = 85.54
84.5 83.3

84.8 91.9 Difference y5 —~ ¥4 = 1.30

87.3 86.3 —_ —

79.7 79.3 Z;% — (X ya)?/na =75.784 }:y,z, ~ (X yg)?/ng = 119.924
85.1 82.6 — —

81.7 89.1

83.7 83.7

84.5 88.5

Pooled estimate of a2: 2= 13784+ 119924 195.708 = 10.8727

10+10-2 18
with v = 18 degrees of freedom

1 1y 2
Estimated variance of ¥ — ¥,:  §° (—— + -—) ==

Ny ng - ﬁ
2 10.8727
Estimated standard error of ¥ — ¥,4: 55- = 5 = 1.47
oo 8= ¥a) ~do
0 s/l/ng 4 1/ny
, 1.30 , .
Fordp =0, g = a7 = 0.88 with v = 18 degrees of freedom

Pr(t > 0.88) = 19.5%

Exercise 3.3, Remove the last two observations from method B (i.e., 83.7 and
88.5) and, again assuming the random sampling hypothesis, test the hypothesis
that ng — s =0.

Answer: s*pooled = 2.5791 with 16 degrees of freedom; t = 1.16/1.47 = 0.78,
Pr(z > 0.78) = 0.228.

Comparing the External and Internal Reference Distributions

Figure 3.5a (similar to Fig. 3.3) displays the reference distribution appropriate
for the statistic Y5 — ¥4 with nq = np = 10 constructed from an external set
of 210 successively recorded observations. As you have seen, for this reference
set Pr[(y¥z —¥4) = 1.30] = 4.7% and the observed difference y5 —y, = 1.30
has a significance probability of 4.7% so that the null hypothesis is somewhat
discredited, and it is likely that ng > na.
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Figure 3.5. (a) Reference distribution based on external data. (b) Reference distribution based on
random sampling model using internal dara. (¢) Plot of y; versus y,—; using the 210 observations
of Table 3.2 showing an estimated correlation (lag-on a autocorrelation) of g = ~0.29.
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In Figure 3.5h, however, you see displayed an appropriately scaled ¢ reference
distribution (v = 18 degrees of freedom) based solely on the internal evidence
contained in the ny + np = 20 observations listed in Table 3.1. This reference
distribution assumes the random sampling model and the observed difference
then has a significance probability of 19.5% which would provide little evidence
against the hypothesis that g — 74 = 0. | '

Why the large disagreement in the probability statements provided by these
two methods of analysis? It was caused by a rather small serial correlation (auto-
correlation) of adjacent observations. The physical reason was almost certainly
as follows. In this particular process the yield was determined by measuring the
volume of liquid product in each successive batch, but because of the design of
the system, a certain amount of product was left in the pipes and pumps at each
determination. Consequently, if slightly less was pumped out on a particular day,
the recorded yield would be low but on the following day it would tend to be
high because the available product would be from both the current batch and any
residual from the previous batch. Such an effect would produce a negative cor-
relation between successive yields such as that found. More frequently in serial
data positive autocorrelation occurs and can produce much larger discrepancies
(see e.g. Box and Newbold, 1971).

Now Student’s ¢ is appropriate on the random sampling hypothesis that the
errors ar¢ not correlated. In which case the variance of an average is V(¥) =
o?/n. However, as noted in Appendix 2A, for autocorrelated data V(¥) can be
very different. In particular, for a series of observations with a single autocorre-
lation of p; at lag 1 (i.e., where each observation is correlated with its immediate
neighbors), it was shown there that the variance of ¥ is not o2/n but

2 . —
o with C=1+2(n l)m

Cx—
n n

Ff)r the 210 successively recorded data that produced the external reference dis-
tribution the estimated lag 1 autocorrelation coefficient is 3, = —0.29. Using
?he above formula for averages of n = 10 observations, this gives an approx-
Imate value C = 0.48. The negative autocorrelation in these data produces a
reduction in the standard deviation by a factor of about v0.48 = 0.7. Thus
the reference distribution obtained from past data in Figure 3.54 has a smaller
Spread than the corresponding scaled t distribution in Figure 3.5b. Student’s
t lest. in this case gives the wrong answer because it assumes that the errors
are independently distributed, thus producing an inappropriate reference
distribution,

You are thus faced with a dilemma: most frequently you will not have past
ta from which to generate an external reference distribution, but because of
fluences such as serial correlation the 1 test based on NIID assumptions will
N0t be valid. Fisher (1935) pointed out that for a randomized experiment the

dilemma might be resolved by using a randomization distribution to supply a
relevant reference set.

da
in
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A Randomized Design Used in the Comparison of Standard and Modified
Fertilizer Mixtures for Tomato Plants

The following data were obtained in an experiment conducted by a gardener
whose object was to discover whether a change in fertilizer mixture applied
to her tomato plants would result in improved yield. She had 11 plants set
out in a single row; 5 were given the standard fertilizer mixture A, and the
remaining 6 were fed a supposedly improved mixture B. The A's and B's
were randomly applied to positions along the row to give the experimental
design shown in Table 3.3. She amrived at this random arrangement by taking
11 playing cards, 5 marked A and 6 marked B. After thoroughly shuffling
them she obtained the arrangemcent shown in the table. The first plant would
receive fertilizer A as would the second. the third would receive fertilizer B, and
S0 on.

Fisher argued that physical randomization such as was employed in this exper-
iment would make it possible to conduct a valid significance test without making
any other assumptions about the form of the distribution.

The reasoning was as follows: the experimental arrangement that was actu-
!

ally used is one of the —]'l—'- = 462 possible ways of allocating 5 A’s and 6 B's
to the 11 trials and any one of the allocations could equally well have been
chosen. You can thus obtain a valid reference set appropriate to the hypothe-
sis that the modification is without effect by computing the 462 differences in
averages obtained from the 462 rearrangements of the “labels.” The histogram in
Figure 3.6 shows this randomization distribution together with the difference in
the averages Y, — ¥4 = 1.69 actually observed. Since 154 of the possible 462
arrangements provide differences greater than 1.69, the significance probability is

Table 3.3. Results from a Randomized Experiment (Tomato Yields in Pounds)

Position in row 1 2 3 4 5 6 7 8 9 10 11

Fertilizer A A B B A B B B A A B

Pounds of 202 114 266 237 253 285 142 179 165 2I.1 243
tomatoes

Standard Modified
Fertilizer A Fertilizer B

29.9 26.6
1.4 23.7
25.3 28.5
16.5 14.2
21.1 17.9

24.3

= 20.84 Fp = 22.53
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Figure 3.6. Randomization distribution with scaled ¢ distribution: tomato plant example.

154/462 = 33%. There was therefore little reason to doubt the null hypothesis
that one fertilizer was as good as the other.

Comparison with the ¢ Test

Writing § for the difference in means ng — 14 on the NIID assumption of random
sampling from a normal population, the quantity (sce Table 3.4 for details)

(Fp—¥4)—38
sl/ng+1/ny

Would be distributed as ¢ with v = ng +n, —2 degrees of freedom. For this
¢xample ¥, — ¥4 = 1.69 so the null hypothesis that § =0 may be tested by
calculating

1.69 -0
=— =044
r=—3; =0
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Table 3.4. Calculation of t for the Tomato Experiment

Tp ~Fa =22.53—20.84 = 1.69

. 2
D ovi- (Z-"A) /ma s, 209.9920

2 _ _ oA _ _
54 na—1 Va 4 52.50
2 ,
., 2 =(X Yo sy 1475333
Sy = = — = ———= =295l
ng—1 U 4
The pooled variance estimate is
4 >)
32= S,\ +SB - \’ASA+UBSB (5250)+5( 95]) =139.73

vp -+ Vg va + Vg 445
withv=n4 +npg—2=v, + vg =9 degrees of freedom

The estimated variance of ¥ — 34 is s (1/ng + 1/n4) = 39.73(1/6 + 1/5) = 14.57.
The standard error of ¥, — ¥, is +/14.57 = 3.82,

(Fa—Fs)—80 _ (22.53-2084)—8 1.69-3
ﬁ(l/n,,+1/u,o V39.73(1/6 + 1/5) 3.82

where §y is the hypothesized value of 8. If §; = 0, then

o =0.44 with v = 9 degrees of freedom
Pr(t > tp) = Pr(t > 0.44) =0.34

and referencing this value to a t table with v =9 degrees of freedom, giving
Pr(r > 0.44) = 34%, as compared with 33% given by the randomization test.
So that in this example the result obtained from NIID theory is very close to
that found from the randomization distribution. A scaled t distribution with the
standard error of ¥5 — ¥, that is, 3.82, as the scale factor is shown together with
the randomization distribution in Figure 3.6. For this example the distributions are
in remarkably good agreement. As Fisher pointed out, the randomization test frees
you from the assumption of independent errors as well as from the assumption
of normality. At the time of its discovery calculation was slow, but with mod-
ern computers calculation of the randomization distribution provide a practical
method for significance testing and for the calculation of confidence intervals.

Exercise 3.4. Given the following data from a randomized experiment, construct
the randomization reference distribution and the approximate scaled  distribution.
What is the significance level in each case?

A B B A B
3 5 5 1 8

Answer: 0.05, 0.04.
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Exercise 3.5. Repeat the above exercise with these data:

B A B A A A B B
32 30 31 29 30 29 31 30

Answer: 0.02, 0.01.

3.2. RANDOMIZED PAIRED COMPARISON DESIGN: BOYS’
SHOES EXAMPLE

Often you can greatly increase precision by making comparisons within matched
pairs of experimental material. Randomization is then particularly easy to carry
out and can ensure the validity of such experiments. We illustrate with a trial on
boys’ shoes.

An Experiment on Boys’ Shoes

The data in Table 3.5 are measurements of the amount of wear of the soles
of shoes worn by 10 boys. The shoe soles were made of two different synthetic
materials, a standard material A and a cheaper material B. The data are displayed
in Figure 3.7 using black dots for material A and open dots for material B. If
you consider only the overall dot plot in the right margin, the black dots and
open dots overlap extensively and there is no clear indication that one material
is better than the other.

But these tests were run in pairs—each boy wore a special pair of shoes,
the sole of one shoe made with material A and the sole of the other with B.
The decision as to whether the left or right sole was made with A or B was

Table 3.5. Boys’ Shoes Example: Data on the Wear of
Shoe Soles Made of Two Different Materials A and B

Boy Material A Material B Differenced = B - A

1 132(L) 14.0(R) 08
2 82L) 8.8(R) 0.6
3 109(R) 11.2(L) 0.3
4 14.3(L) 14.2(R) ~0.1
5  10.2(R) 11.8(L) 1.1
6  6.6(L) 6.4(R) -02
7 9.5(L) 9.8(R) 0.3
8 108(L) 113(R) 0.5
9 8.8(R) 9.3(L) 0.5
10 13.3(L) 13.6(R) 0.3

Average difference d = 0.41
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Figure 3.7. Data on two different materials A and B, used for making soles of boys' shoes.

determined by the flip of a coin. During the test some boys skuffed their shoes
more than others, however for each boy his two shoes were subjected to the same
treatment. Thus by working with the 10 differences B — A most of the boy-to-
boy variation could be eliminated. An experimental design of this kind is called
a randomized paired comparison design. (You will see in the next chapter how
this idea can be extended to compare more than two entities using “randomized
block” designs.)

Notice that while it is desirable that the experimental error within pairs of
shoes is made small it is not necessary or even desirable that the variation berween
pairs be made small. In particular, while you might at first think that it would
be better to make all the tests with the same boy, reflection will show that this
1s not so. If this was done, conclusions might apply only to that particular boy.
By introducing 10 different boys, you give the experiment what Fisher called
a “wider inductive base.” Conclusions drawn now depend much less on the
choice of boys. This idea is a particular case of experimenting to produce robust
products, as discussed later. You might say that the conclusions are robust to the
choice of boys.

Statistical Analysis of the Data from the Paired Comparison Design

Material A was standard and B was a cheaper substitute that, it was feared, might
result in an increased amount of wear. The immediate purpose of the experiment
was to test the hypothesis that no change in wear resulted when switching from
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A to B against the alternative that there was increased wear with material B.
The data for this experiment are given in Table 3.5.

A Test of Significance Based on the Randomization Reference Distribution

Randomization for the paired design was accomplished by tossing a coin. A
head meant that material A was used on the right foot. The sequence of tosses

obtained was

T THTHTTTHT

leading to the allocation of treatments shown in Table 3.5.

Consider the null hypothesis that the amount of wear associated with A and
B are the same. On this hypothesis, the labeling given to a pair of results merely
affects the sign associated with the difference. The sequence of 10 coin tosses is
one of 2'% = 1024 equiprobable outcomes. To test the null hypotheses, therefore,
the average difference 0.41 actually observed may be compared with the other
1023 averages obtained by calculating d for each of the 1024 arrangements
of signs in: _
+08+06+---+£03

10

d=

The resulting randomization distribution together with the appropriately scaled ¢
distribution is shown in Figure 3.8.

—~—

i ] ! I
0.
-0.4 -0.2 0.0 0.2 0.4
Difference means

Figure 3.8. Randomization distribution and scaled r distribution: boys® shoes example.
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The value d = 0.41 that actually occurred is quite unusual. Only 3 of the 1024
differences produced by the randomization process give values of d greater than
0.41. Using Yates’s continuity correction and including half of the four dlfferences
in which d = 0.41, you get a significance level of 5/1024 = 0.5%. Thus the
conclusion from this randomization test is that a highly statistical significant
increase in the amount of wear is associated with the cheaper material B.

Corresponding and Test

Consider again the ditferences 0.8, 0.6, ..., 0.3. If you accepted the hypothesis
of random sampling of the d’s from a normal population with mean &, you could
use the ¢ distribution to compare d with any chosen value 3¢ of 8. If there were
n differences § — §; then

= 2 ' A2
, d-dF Y d- (Xd) ma _3.030 - 1.681

= = = = 0.
% n—1 n—1 9 145
- ‘ 86
sy = +/0.149 = 0.386 and 55 = 2 _ 93— =0.122

Jno /10

The value of #, associated with the null hypothesis § = § is

t_2-50_0.41—o_34
T s oz T

By referring this to the ¢ table with nine degrees of freedom, you find
Pr(t > 3.4) = 0.4%

which agrees closely with the result of 0.5% given by the randomization distri-
bution.

Exercise 3.6. Given these data from a randomization paired comparison design
and using the usual null hypothesis, construct the randomization distribution and
the corresponding scabbed ¢ distribution and calculate the significance levels
based on each.

B A|A B|A B|B A|A B
7 9(3 58 12111 4[4 6

Exercise 3.7. Repeat the above exercise with the following data

B A|B A|A B|A B|B A|B A|A B |B A
29 29132 30|23 25|36 37|39 38|31 31|27 26|30 27
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A Complementary Graphical Display

As an adjunct to the ¢ test and randomization test, a graphical procedure is
introduced. In Figure 3.9a a dot plot of the residuals d — d supplies a reference
distribution for d. The open dot on the same diagram indicates the scaled average
d x /v =0.41 x 3 = 1.23. The scale factor /v is such that if the true differ-
ence was zero the open circle could be plausibly considered as a member of
the residual reference plot.* In Figure 3.9b a normal plot of the residuals is also
appended. These graphical checks thus lead to the same conclusion as the formal
t test and the corresponding randomization test.

Why the Graphical Procedure?

Since an “exact” ¢t test is available supported by the randomization test, why
bother with the graphical plot? A famous example will explain.

<+——0.41 x Vg ——p

-

[Drmeem———

SEEEVY S U ¥ S - |
-1.0 -05 0.0 0.5 1.0 15
(a)
! s | |
! ' t ]
9 : o—} i
| ' ' :
8 - —® ‘ T
7 . e § —
6 s e | i
5 AN MR S
4 5 o~ i
: ; ; :
3 s *— : :
1 13 . [}
: ! : !
2 ¢ i 1 |
i 5 +
1 ‘ {1 g ! 1
(b)

Figure 3.9, Boys® shoes example: (a) reference dot plot of residuals d' —d and in relation to the
scaled mean; (b) normal plot of the residuals.

'Spcciﬁcally the natural variance of the open dot would be the same as that of the residual dots (see
Appendix 4A for details).
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Darwin’s Data on the Heights of Plants

In his book The Design of Experiments Fisher (1935, p. 36) illustrated the paired ¢
test with data due to Charles Darwin. An experiment was conducted in which the
heights of 15 pairs of plants were measured. Of each pair one was self-fertilized
and the other cross-fertilized and each pair was grown in the same pot. Darwin
wanted to know if there was evidence of a difference in mean heights for the two
types of plants. The 15 differences d in eighths of an inch are given in Table 3.6.
Also shown are the average d, its estimated standard error 57, and the value of
!t = 2.15 which has 14 degrees of freedom.

The 5% point for ¢ is 2.145, and Fisher observed, “the result may be judged
significant, though barely s0.” He noted that the flaw in Darwin’s procedure was
the absence of randomization and he went on to show that the result obtained from
the t test was almost exactly duplicated by the randomization test using the. Yates
adjustment for continuity. He did this by evaluating only the extreme differences
of the randomization distribution. The complete evaluation here is shown in
Figure 3.11. As in the case of the two previous examples, the randomization
distribution and the appropriately scaled t distribution are quite similar.

Thus there was some evidence that cross-fertilized plants tended to be taller
than comparable self-fertilized plants and this reasoning seems to be supported
by the dot plots in Figures 3.10a and b since the scaled average represented
by the open dot does appear somewhat discrepant when judged against the
residual reference set. But much more discrepant are the two outlying devia-
tions shown on the left. (These are observations 2 and IS in Fisher's table.)
Associated discrepancies are displayed even more clearly in the normal plots
of the original unpaired data in Figures 3.10c¢,d, from which it seems that two
of the cross-fertilized plants and possibly one of the self-fertilized plants are
suspect.

Thus, if around 1860 or so0 you were advising Darwin, you might say, “Charles,
you will see there is some evidence that cross-fertilized plants may be taller than
the self-fertilized but results from these few plants seem questionable.” To which
Darwin might reply, “Yes. I see! Before we do anything else let’s walk over to
the greenhouse and look at the plants and also at my notebook. I may have made
copying errors or we may find that the deviant plants have been affected in some
way, possibly by disease.™

Table 3.6. Differences in Eighths of a Inch between
Cross- and Self-Fertilized Plants in the Same Pair

49 23 56
—-67 28 24
8 41 75

16 14 60

6 29 —48

d =20.93 53 =975 t =2.15 v=14
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Figure 3.10. Darwin's data: (a) reference dot plot of the residuals d — d in relation to the sculed
mean; (k) normal plot of the residuals; (¢) normal plot for cross-fertilized plants; (d) normal plot for
sell-fertilized plants.
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Figure 3.11. Reference distribution and scaled ¢ distribution: Darwin's paired data.

Nothing other than looking carefully at the physical evidence and the data
itself and derived values such as residuals can reveal discrepancies of this kind.
Neither the randomization test nor any of the other so-called nonparametric dis-
tribution free tests will help you. In many cases, as.in this example, such a test
may merely confirm the result obtained by the parametric test (in this case a !
test). See, for example, Box and Andersen (1955). To see why this is so, notice
that the randomization test is based on Fisher’s concept that after randomization,
if the null hypothesis is true, the two results obtained from each particular pot
will be exchangeable. The randomization test tells you what you could say if that
assumption were true. But notice that inspite of randomization the basic hypothe-
sis of exchangeability would be false if, for example, the discrepant plants could
have been seen to be different (e.g., diseased). The data from such plants would
then constitute a recognizable subset and there would be three distributions: self-
fertilized, cross-fertilized, and diseased. So randomization as envisaged would
not produce a relevant reference distribution for the comparison of interest. Such
discrepancies can only be found by looking.

Discussion of a Constructed Example

From these three examples of randomization tests and associated 7 tests—the
tomato plant data, the boys’ shoes, and Darwin’s data—you might be left with an
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impression that the two types of tests, randomization and ¢, will always coincide.
The following example illustrates that this is not so. This appeared in an article
urging the supposed superiority of randomization tests and was used to show
that for the comparison of two means the randomization distribution may not
necessarily be approximated by the ¢ distribution. The authors Ludbrook and
Dudley, (1998) used the following constructed example.

It was supposed that 12 men from a fitness center were asked to participate “in
an experiment to establish whether eating fish (but not meat) resulted in lower
plasma cholesterol concentrations than eating meat (but not fish).” The men were
supposedly randomly allocated to the fish eating and meat eating groups and it
was further supposed that at the end of one year their measured cholesterol
concentrations were as follows:

Fish eaters: 5.42, 5.86, 6.156, 6.55, 6.80, 7.00, 7.11.
Meat eaters: 6.51, 7.56, 7.61, 7.84, 11.50.

The authors remarked that most investigators would note the outlying value
(11.50) in the meat eating group (see normal plot in Fig. 3.12a) and having
confirmed that “it did not result from an error of measurement or transcription”
use some different test procedure. By contrast, they calculated the randomization
distribution in Fig. 3.12b for the difference in the averages (¥pea — Yiisn)- AS they
found, the distribution is bimodal and bears no resemblance to the symmetric ¢
distribution.

However, in a real investigation, having determined that the outlying result
is genuine (e.g., not from a copying error), a very important question would
be, “Was there something different about this particular subject or this particular
test that produced the outlying result?* Were all the cholesterol determinations
made in the same laboratory? What were the cholesterol readings for the subjects
at the beginning of the study? Did the aberrant subject come from a family in
which high cholesterol levels were endemic? Did the subject stop taking the
fitness classes? Did he or she follow a different exercise routine? Did a physical
examination and appropriate laboratory tests support other abnormalities? In a
real scientific investigation the answers to such questions would greatly affect
the direction of subsequent investigation.

The statistical question posed was whether or not the null hypothesis is sensible
that meat eaters and fish eaters came from the same population or from two
populations with different means. However, if any of the above explanations
was found to be correct, the aberrant observation would have come from a third
population (e.g., meat eaters who were members of a high-cholesterol family)
and the outlying observation would be a member from a recognizable subset and
the two-sample randomization reference distribution would not be relevant.

. In Figure 3.12¢ we have added a third diagram which shows that the bimodal-
ity of the randomization distribution of ¥,., — ¥y is entirely produced by the
flberrant data value 11.50. The shading indicates that almost all of the samples
In the left hand hump as those where the aberrant value was allocated to ¥gy,
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Figure 3.12. (¢) Normal plots for fish and meat eaters. (b) Bimodal randomization distribution for
(Ve = Y )- (¢) Distribution with shaded portion indicating samples in which the outlier occurred
in Fep-

and those in the right hand hump to ¥,,.,. Thus in an ongoing investigation
reaction to these data should not be to use this bimodal distribution to supply a
significance test or to look for some alternative test but to try to determine the
reason for the discrepant observation. If this could be found it might constitute
the most important discovery from this experiment.

What Does This Tell Us?

Whatever your field of expertise, there are important lessons to be learned from
these examples. The statistics in textbooks and in many published papers concern
themselves mostly with the analysis of data that are long dead. Observations that
are apparently discrepant can be dealt with only in terms of various tests. Thus
you will find a particular suspect “data set” analyzed and reanalyzed; one expert
will find an outlier, another will argue there are probably two outliers, another



32 RANDOMIZED PAIRED COMPARISON DESIGN: BOYS' SHOES EXAMPLE 91

will say that if an appropriate transformation on the data is made there may
be none, and so on. But such postmortem analyses of data obtained from some
experimental system that no longer exists are necessarily reactive and cannot lead
to any certain conclusions. The question *“So if you got these results, what would
you do now?” is rarely asked, and if you are content only to be a data analyst,
you can do nothing about it anyway. The reason for discordant runs that prove
not to be copying mistakes can be decided only by looking and checking the
system that generated the data and finding out, possibly by making one or two
additional runs, if something exceptional was done that might explain suspect
runs. (Experiment and you’ll see.) This is only possible if you are part of the
team carrying out the ongoing investigation.

Thus, just as you might in 1860 have walked with Charles Darwin down to
his greenhouse to try to find out what was going on, when you are involved
in an investigation that shows aberrant values, you must do likewise, that is,
walk down* to the laboratory, to the pilot plant, or to the test bed where the
data were generated and talk to those responsible for the experiment and the
environment surrounding the process of data taking. This is one of the many
reasons why the designer and analyst of the experiment must be part of the
investigation. :

When you visit the laboratory, process, or test bed where the data were
obtained and talk to those running the experiments, the first thing to look for is
whether the data you analyzed are the same as the data they originally recorded.
If there were no copying errors, you should try to find out whether something
unusual happened during a suspect run. Good experimenters, like Darwin, keep
notebooks on the experimental runs they make. (You should make sure that your
experimenters do too.) An experimenter might say, “Yes, in order to run this
particular combination of specified conditions, we had to change certain other
factors” (e.g., use a higher pressure or an increased flow rate). A deviation from
the protocol of this kind may be the reason for unusually high values (perhaps
good) or low values (perhaps bad). If the former, you may have stumbled on
an unsuspected factor that could be used to improve the process! If the latter,
then you may have found conditions to avoid. In either case, this search for an
assignable cause for the unusual event is likely to teach you something and point
the way where further experimentation is necessary.

Remember that your éngineers, your other technologists, and your competitor’s
engineers and technologists have had similar training and possess similar beliefs.
Therefore, finding out things that are not expected is doubly important because
it can put you ahead of the competition. It is said that the hole in the ozone
layer would have been found much earlier if the data continuously transmitted
from the orbiting satellite had not been screened by a computer program that
automatically removed or down-weighted outliers. If you just throw away “bad
values,” you may be throwing away important information.

*If the experiment is being conducted at a remote site that you cannot visit. much can be done by
telephone or email.
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3.3. BLOCKING AND RANDOMIZATION

Pairing observations is a special case of what is called blocking. You will find
that blocking has important applications in many kinds of experiments. A block
is a portion of the experimental material (the two shoes of one boy, two seeds in
the same pot) that is expected to be more homogeneous than the aggregate (the
shoes of all the boys, all the seeds not in the same pot). By confining comparisons
to those within blocks (boys, pots), greater precision is usually obtained because
the differences associated between the blocks are eliminated.

In the paired design the “block size™ was 2, and we compared two treatments
A and B. But if you had been interested in comparing four types of horseshoes,
then, taking advantage of the happy circumstance that a horse has. four legs, you
could run this experiment with blocks of size 4. Such a trial would employ a
number of horses, with each horse having the four different treatments applied
randomly to the horseshoes on its four hooves. We discuss the use of such larger
blocks in later chapters.

Pairs (Blocks) in Time and Space

Runs made close together in time or space ar¢ likely to be more similar than
runs made further apart* and hence can often provide a basis for blocking. For
example, suppose that in the comparison of two treatments A and B two runs
could be made each day. If there was reason to believe that runs made on the
same day would, on the whole, be more alike than those on different days, it
would be advantageous to run the trial as a paired test in which a block would
be an individual day and the order of running the two treatments within that day
would be decided at random. ‘

In the comparison of methods for treating leather specimens, pieces of leather
close together on the hide would be expected to be more alike than pieces further
apart. Thus, in a comparative experiment 6-inch squares might be cut from several
hides, each square cut in two, and treatments A and B applied randomly to
the halves.

A Possible Improvement in the Design of the Experiment on Tomato Plants

Earlier in this chapter we considered a randomized experiment carried out by a
gardener to compare the effects of two different fertilizers on tomato plants. The
fully randomized arrangement that was used was a valid one. On the assumption
of exchangeability the difference in means was referred to a relevant reference
set. However, an equally valid arrangement using randomized pairs might have
been more sensitive for detecting real differences between the fertilizers. Plots
close together could be used as a basis for pairing, and with six plots of two plants
each the arrangement of treatments might have looked like that shown below:

(B A (B A) (A B) (B A) (A B) (B A

* Notice, however, that the 210 consccutive yields for the production data were negatively scrially
corrclated. This does not often happen, but it can!
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Because the relevant error would now arise only from the differences between
adjacent plants, this arrangement would usually be better than the unpaired
design.

Occasionally, however, for either of two reasons the paired design could be
less sensitive. For example:

(a) Inan experiment using 12 plots the reference ¢ distribution for the unpaired
design would have 10 degrees of freedom. For the design arranged in six
pairs it would have only 5 degrees of freedom. Thus you would gain from
the paired design only if the reduction in variance from pairing outweighed
the effects of the decrease in the number of degrees of freedom of the ¢
distribution. ‘

(b) It can happen (as in the industrial data of Table 3.1) that the errors
associated with adjacent observations are negatively correlated so that
comparisons within pairs are /ess alike because of the noise structure.

Block What You Can and Randomize What You Cannot

The lack of independence in experimental material provides both a challenge
and an opportunity. Positive correlation between adjacent agricultural plot yields
could be exploited to obtain greater precision. On the exchangeability assumption
randomization could approximately validate the statistical tests.

Although blocking and randomization are valuable devices for dealing with
unavoidable sources of variability, hard thinking may be required when faced
with sources of variability that are avoidable. Extraneous factors likely to affect
comparisons within blocks should be eliminated ahead of time, but variation
between blocks should be encouraged. Thus, in the boys' shoes example it would
be advantageous to include boys of different habits and perhaps shoes of different
styles. But choosing only boys from the football team would clearly reduce the
scope of the inferences that could be drawn. ’

About the Nonparametric and Distribution Free Tests

The randomization tests mentioned in this chapter introduced in 1935 were
the first examples of what were later called, “nonparametric” or “distribution
free” tests.

Although something of a mouthful to say, exchangeability theory tests would
be a more appropriate name for these procedures. The name would then point
out the essential assumption involved. You replace the NIID assumption for the
assumption of exchangeability. This assumption becomes much more plausible
for an experiment that has been appropriately randomized. But as you have seen,
you must always be on the lookout for “bad” data.

Sampling experiments that demonstrate the effects of nonnormality, serial
dependence, and randomization on both kinds of tests are described in Appendix
3A. In particular, you will see that when the distribution assumption of serial
independence is violated both kinds of tests are equally seriously affected.
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3.4. REPRISE: COMPARISON, REPLICATION, RANDOMIZATION,
AND BLOCKING IN SIMPLE EXPERIMENTS

What have you learmned about the conduct of experiments to assess the possible
difference between two means for treatments A and B?

I. Whenever possible, experiments should be comparative. For example, if
you are testing a modification, the modified and unmodified procedures
should be run side by side in the same experiment,

2. There should be genuine replication. Both A and B runs should be carried
out several times. Furthermore, this should be done in such a way that
variation among replicates can provide an accurate measure of errors that
‘affect any comparison made between A runs and B runs.

. Whenever appropriate, blocking (pairing) should be used to reduce error.
Similarity of basic conditions for pairs of runs usually provides a basis for
blocking, for example, runs made on the same day, from the same blend
of raw materials, with animals from the same litter, or on shoes from the
same boy.

4. Randomization should be planned as an integral part of experimentation,
Having eliminated “known” sources of discrepancy, either by holding them
constant during the experiment or by blocking, unknown discrepancics
should be forced by randomization to contribute homogencously to the
errors of both treatments A and B. Given the speed of the modern computer
a full randomization test might as well be made. When the exchangeability
hypothesis makes sense, the randomization test is likely to agree closely
with the parametric 1 test.

5. None of the above will necessarily alert you to or protect your experiment
from the influence of bad values. Only by looking at the original data
and at the appropriate checks on the original data can you be made aware
of these.

6. In spite of their name, distribution free tests are not distribution free and
are equally sensitive to violation of distributional 1ID assumptions other
than that of normality,

7. Even with randomization the assumption of exchangeability can be violated.

'

3.5. MORE ON SIGNIFICANCE TESTS

One- and Two-Sided Significance Tests

The objective of the experiment comparing the two types of boys’ shoe soles was
to test the null hypothesis Hy that no change in wear resulted when switching from
material A to the cheaper material B. Thus it can be said that the null hypothesis
Hy : 8y = ng — na = 0 is being tested against the alternative hypothesis Hy that
there was increased wear with material B, that is, H, : ng — n4 > 0. The data
for this experiment were given in Table 3.5. The value of # associated with this
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one-sided test of the nuil hypothesis is

_d—38 041-0

= = =134
= 01z

Referring this to the ¢ table Appendix B with nine degrees of freedom gives
Pe(t > 3.4) = 0.4%

If the modification under test could have affected the wear equally well in either
direction, you would want to test the hypothesis that the true difference § was
zero against the alternative that it could be greater or less than zero, that is,

Hy:6=148)=0, Hy: 8 # &

You would now ask how often t would exceed 3.4 or fall short of —3.4. Because
the ¢ distribution is symmetric, the required probability is obtained by doubling
the previously obtained probability, that is,

Pr(jt| > |to]) = 2 x Pr(t > 3.4) = 0.8%

If the true difference were zero, a deviation in either direction as large as that
experienced or larger would occur by chance only about 8 times in 1000.

Exercise 3.8. Given the data below from a randomized paired design, calculate
the ¢ statistic for testing the hypothesis § = 0 and the probability associated with
the two-sided significance test.

A B|A B|A B|A
3 5 (8 12111 4|2

Answer: t = 4.15, p value = 0.014.

O
W

B
10

Conventional Significance Levels

A number of conventional significance levels are in common use. These levels
are somewhat arbitrary but have been used as “critical” probabilities represent-
ing various degrees of skepticism that a discrepancy as large or larger than that
observed might occur by chance. A discrepancy between observation and hypoth-
esis producing a probability less than the “critical” level is said to be significant*
at that level. A conventional view would be that you should be somewhat con-

vinced of the reality of the discrepancy at the 5% level and fairly confident at
the 1% level.

*The choice of the word significans in this context is unfortunate since it refers not to the importance
of a hypothesized effect but 10 its plausibility in the light of the data. In other words, a particular
difference may be statistically significant but scientifically unimportant and vice versa.
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It is always best to state the probability itself. The statement that a particular
deviation is “not significant at the 5% level” on closer examination is sometimes
found to mean that the actual “significance probability” is 6%. The difference in
mental attitude to be associated with a probability of 5% and one of 6% is of
course negligible. In practice your prior belief in the possibility of a particular
type of discrepancy, subject matter knowledge and the consequences (if any) of
being wrong must affect your attitude. Complementary graphical analysis such
as we show in Figures 3.9 and 3.10 and in later chapters can make it less likely
that you will be misled.

Significance testing in general has been a greatly overworked procedure. Also
in most cases where significance statements have been made. it would have been
better to provide an interval within which the value of the parameter in question
might be expected to lie. Such intervals are called confidence intervals.

Confidence Intervals for a Difference in Means: Paired Comparison Design

The hypothesis of interest is not always the null hypothesis of *“no difference.”
Suppose that in the boys’ shoes example the true mean increase in wear of the
cheaper material B compared to material A had some value 8. Then a4 1 —«
confidence interval for § would be such that, using a two-sided significance
test, all values of § within the confidence interval did not produce a significant
discrepancy with the data at the chosen value of probability « but all the values
of & outside the interval did show a significant discrepancy. The quantity 1 —«
is sometimes called the confidence cocfficient. For the boys’ shoes example the
average difference in wear was d = 0.41, its standard error was 0.12, and there
'were nine degrees of freedom in the estimate of variance. The 5% level for the
t distribution is such that Pr(|t] > 2.262) = 5%. Thus all values of § such that

< 2.262

1041 -8
0.12

would not be discredited by a two-sided significance test made at the 5% level
and would therefore define a 95% confidence interval. Thus the 95% confidence
limits for the mean 8 are

0.41 £2.262 x 0.12 or 041+0.27

This interval thus extends from 0.14 to 0.68. The two values §_ = 0.14 and
8+ = 0.68 are called confidence limits and as required the confidence interval
spans the values of § for which the observed difference d = 0.41 just achieves a
significant difference.* See Figure 3.13.

Exercise 3.9. For the data given in the previous exercise compute the 80% con-
fidence limits for the mean difference 6. Answer: 3.0, 6.6.

*It has the theoretical property that in “repeated sampling from the same population™ a proportion
! — a of intervals so constructed would contain 8.
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The value of #, 4/ denotes the ¢ deviate with v degrees of freedom corresponding
to the single tail area a/2. See the 1 table (Table B at the end of this book).

Confirmation Using Randomization Theory

Randomization theory can be used to verify the 95% confidence levels of §_ =
0.14 and 8, = 0.68, which just produce a significant discrepancy with the data
and so delineate the confidence interval. The necessary data for making the
calculations are given in Table 3.7.

The hypothesis that the parent populations have a difference in mean equal
to the upper limit §, = 0.68 implies that after subtracting 0.68 from each of
the differences the signs (plus or minus) carried by the resulting quantities are a
matter of random labeling. The resulting quantities given in column 2 of Table 3.7
have an average of 0.41 — 0.68 = —0.27. Sign switching shows that just 25 out
of the possible 1024 possible averages (i.e., 2.4%) have equal or smaller values.
Similarly, after subtracting §_ = 0.14 the third column of the table is obtained,
whose average value is 0.41 — 0.14 = 0.27. Sign switching then produces just
19 out of 1024 possible averages (i.e., 1.9%) with equal or larger values. These
values approximate® the probability of 2.5% provided by the ¢ statistic.

* The adjustment for continuity due to Yates (see Fisher, 1935, p. 47) allowing for the fact that the
randomization distribution is discrete produces cven closer agreement.
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Table 3.7. Calculations for Confirmation Via Randomization Theory of Confidence
Interval

Original Difference Difference — 0.68 Difference — (0.14

(1 (2) (3)

0.80 0.12 0.66

0.60 —-(.08 0.46

0.30 -0.38 0.16

-0.10 -0.78 -0.24

1.10 0.42 0.96

—0.20 —0.88 -0.34

0.30 -0.38 0.16

0.50 -0.18 0.36.

0.50 —0.18 0.36

0.30 —0.38 0.16

Average 041 —0.27 0.27

Note: Original Differences from Table 3.5, boys’ shoes example.

In the analysis of randomized designs to compare means, we shall proceed
from now on to calculate confidence intervals employing normal sampling the-
ory on the basis that these procedures could usually be verified to an adequate
approximation with randomization theory.*

Exercise 3.10. Using the data in the previous example, determine the approxi-
mate 80% confidence interval of § using the randomization distribution.

Answer: 2.8 1o 6.5 approximately.

Sets of Confidence Intervals

A better understanding of the uncertainty associated with an estimate is provided
by a set of confidence intervals. For instance, using d % 1} .57 and the ¢ table in
o

(Table B at the back of the book), one can compute the set of confidence intervals
given in Table 3.8. These intervals are shown diagrammatically in Figure 3.14.

A Confidence Distribution

A comprehensive summary of all confidence interval statements is supplied by a
confidence distribution. This is a curve having the property that the area under the
curve between any two limits is equal to the confidence coefficient for that pair

¥ Studies have shown (Welch, 1937, Pitman; 1937, Box and Andersen: 1955) that these properties
extend to analysis of variance problems that we later discuss. Specifically Box and Anderson show
that randomization tests can be closely approximated by corresponding parametric tests with slightly
maodified degrees of freedom.
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Table 3.8. Confidence Intervals: Boys® Shoes

Example
Confidence
Interval
Significance Confidence —
Level Coefficient d- 8,
0.001 0.999 -0.16 0.98
0.01 0.99 0.01 0.81
0.05 0.95 0.14 0.68
0.10 0.90 0.19 0.63
0.20 0.80 0.24 0.58
99.9% FH— {
99% F i
95% — —
R S S DR NN N N BUS R MR DR S
-0.2 0 0.2 0.4 0.6 0.8 1.0
. 5

Figure 3.14. Set of confidence intervals: boys™ shoes example.

of confidence limits. Such a curve is shown for the shoe data in Figure 3.15. For
example, the area under the confidence distribution between the 90% limits 0.19
and 0.63 is exactly 90% of the total area under the curve. The curve is a scaled ¢
distribution centered at d = 0.41 and having scale factor s; = 0.12. Note that, on
the argument we have given here, this confidence distribution merely provides
a convenient way of summarizing all possible confidence interval statements.
It is nor the probability distribution for 8, which according to the frequency
theory of statistical inference is a fixed constant and does not have a distribution.
It is interesting, however, that according to the allernative statistical theory of
Bayesian inference the same distribution can, on reasonable assumptions, be
interpreted as a probability distribution. We do not pursue this tempting topic
further here, but to us, at least, to do this would make more sense.

Confidence Intervals Are More Useful Than Single Significance Tests

The information given by a set of confidence intervals subsumes that supplied
by a significance test and provides more besides. For example, consider the
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Figure 3.15, Confidence distribution for the difference in wear produced by two materials: boys’
shocs example.

statement that the 95% interval for § extends from §_ = 0.14 to §; = 0.68. That
the observed difference d = 0.41 is “significant” for 8 = 0 at the 5% level is
evident in the confidence interval statement since the postulated value of § =0
lies outside the interval. The interval statement, however, provides you with
important additional facts:

1.

At the 5% level the data contradict any assertion that the modification
causes a change in the amount of wear greater than 0.68. Such a statement
could be very important if the possible extent of a deleterious effect was
under study.

Contemplation of the whole 95% interval (0.14, 0.68) makes it clear that,
although we have demonstrated a *“highly significant” difference between
the amounts. of wear obtained with materials A and B, since the mean wear
is about 11, the percentage change in wear is quite small.

The width of the interval 0.68 — 0.14 = 0.54 is. large compared with the
size of the average difference 0.41, If this difference had to be estimated
more precisely, the information about the standard error of the difference
would be useful in deciding roughly how many further experiments would
be needed to reduce thé confidence interval to any desired extent. For
example, a further test with 30 more pairs of shoes would be expected to
halve the interval. (The length of the interval would be inversely propor-
tional to the square root of the total number of pairs tested.)

In addition to these calculations, a graphical analysis should of course be
made that allows you to see all the data, to be made aware of suspect
observations, and to more fully appreciate what the data do and do not
tell you
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Confidence Intervals for a Difference in Means: Unpaired Design

For a fully randomized (unpaired) design such as was used in the tomato plant
example a confidence interval for the mean difference ng — 14 may be obtained
by an argument similar to that used above. The two treatments had np = 6 and
ns = 5 observations and the difference in the averages ¥p — ¥, = 1.69. The
hypothesis that the mean difference § = 74 — ng has some value §y can therefore
be tested by referring

(Vg —Fa)—b0 _ 1.69 =3y
s l/ng+1/ny4 3.82

g =

to a table of the ¢ distribution with (ng — 1) + (n4 — 1) = 9 degrees of freedom,
For the two-tailed test Pr(j¢t| > 2.262) = 0.05. Thus all the values of § = g — n4

hich
for whic |l.69-—8

383 ’l < 2.262

are not discredited at the 5% level by a two-sided significance test. The 95%
confidence limits are therefore

1.69 £ 3.82 x 2.262 or 1.69 + 8.64

and the 95% interval extends from —6.95 to 10.33. These limits can be verified
approximately by a randomization test as before.
In general, the 1 — a limits for § = ng — n4 are

(5 —Fa) T tuppsy/ 1 ng+1/ng

where _
2 _ (ng — 1)s3 + (na — 1)s3
(ng=1)+ (nqa—'1)

Exercise 3.11. Given the following data from a randomized experiment, compute
the probability associated with the two-sided significance test of the hypothesis
that g — 54 = 0O:

A B B A B
3 5 § 1 8
Answer: 0.08.

Exercise 3.12. Repeat the above exercise with these data:

B A B A A A B B
32 30 31 29 30 29 31 30

Answer: 0.02.
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Exercise 3.13. Using the data in Exercise 3.11, compute the 95, 90, and 80%
confidence interval for ng — na. Answer: (—0.7,8.7), (0.5,7.5) (1.6,6.4).

Exercise 3.14. Using the data in Exercise 3.12, compute the 95, 90, and 80%
confidence interval for ng — 4.

Answer: (=0.4,3.4), (0.3,2.7), (0.5,2.5), (0.8, 2.2).

Exercise 3.15, Following the approach described in this chapter, derive the for-
mula for a 1 — & confidence interval for the mean n given a random sample of
n observations yy, y2, ..., ¥, from a normal population.

Answer: y & ta/zsﬁ, where 5% = Y (y— ?)2/ (n — 1) with b = (n — 1) degrees
of freedom.

Exercise 3.16. Using your answer to the above exercise, compute the 90% confi-
dence interval for n given the following mileage readings: 20.4, 19.3, 22.0, 17.5,
14.3 miles per gallon. List all your assumptions. Answer: 18.7 £ 2.8.

In this chapter we have obtained formulas for 1 — a confidence intervals of
differences in means for paired and unpaired experiments. Notice that both these
important formulas are of the form

Statistic = 12 x standard error of the statistic

where the standard error is the square root of the estimated variance of the statis-
tic. For regression statistics, which we discuss later, as indeed for any statistic that
is a linear function of approximately normally distributed data, similar intervals
can be constructed.

Inferences about Variances of Normally Distributed Data

Sometimes it is the degree of variation that is of interest. For example, in man-
ufacturing it may be that the dye uptake of nylon thread, the potency of an
antityphus vaccine, or the speed of color film varies as little as possible. Process
modifications that reduce variance can be of great importance. Again, it may
be of interest to compare, for example, the variation of two analytical meth-
ods. The following describes how tests of significance and confidence intervals
may be obtained for variances. The performance of these methods for comparing
variances are, however, much more dependent on approximate normality of the
parent distribution than are the corresponding methods for comparing means.

You saw in Chapter 2 that on the hypothesis of random sampling from normal
populations the standardized sum of squares of deviations from ¥ has a chi-square
distribution with v = n — 1 degrees of freedom. Thus

Z(,Vu -5’ (n —1)s? -2
o? -

o2 n-1l
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A Significance Test

It is claimed that measurements of the diameter of a rod in thousandths of an
inch have a variance o2 no larger than 10. Suppose you make six measurements
and obtain as estimate of variance s2 = 13, On NIID assumptions, is there any
substantial evidence that the variance is higher than what is claimed? If you refer
(n — Ds2o? = (5 x 13)/10 = 6.5 to a x? table with five degrees of freedom,
(see Table c at the end of this book). You will see that such a discrepancy happens
more than 25% of the time so there is little reason to dispute the claim.

A Confidence Interval

The lower and upper | — & confidence limits for a2 are of the form

(n — 1)s? and (n — 1)s?
B A

where, as before, the confidence limits are values of the variance o2 that will
just make the sample value significant at the stated level of probability.

Suppose, as before, you had obtained as estimate of variance 5% = 13 based on
five degrees of freedom. A 95% confidence interval for the population variance o2
could be obtained as follows. The x? table shows that 0.975 and 0.025 probability
points of x2 with v =5 degrees of freedom are A = 0.831 and B = 12.83. Thus
the required 95% confidence limits are

5xl3=5.07 and 5x13

= 78.2
12.83 oL - o2

Notice that, unless the number of degrees of freedom is high, the variance and
its square root the standard deviation cannot be estimated very precisely. As a
rough guide, the standard deviation of an estimate § expressed as a percentage of
o is 100/+/2v, Thus, for example, if we wanted an estimate of & with no more

than a 5% standard deviation, we would need a sample of about 200 independent
observations!

Exercise 3.17. Using the data of Exercise 3.16, obtain a 90% confidence interval
for the variance of the mileage readings. Carefully state your assumptions.

Testing the Ratio of Two Variances

Suppose that a sample of n; observations is randomly drawn from a normal
distribution having variance o2, a second sample of 1, observations is randomly
drawn from a second normal distribution having variance o2, and estimates e
and 53 of the two population variances are calculated, having v; and v; degrees of
freedom. On the standard NIID assumptions, since sj/o? is distributed as x2 /vy
and s3/0} is distributed as X2 /va, the ratio (x2/vi)/(x2/v2) has an F distribution
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with v; and v; degrees of freedom. The probability points of the F distribution
are given in Table D at the end of this book. Thus,

2, 2 2 2
sifor F or equivalentl 3.0 p
SZ/O'Z YL q y 52 7 v

2/9) 52 0,

For example, the sample variances for replicate analyses performed by an
mexpenenced chemist 1 and an experienced chemist 2 are s? = 0.183 (v; = 12)
and 52 = 0.062 (v, =9). Assuming the chemists’ results can be treated as nor-
mally and independently distributed random variables havmg variances 01 and
0,2, suppose you wnsh to test the null hypothesis that ol = 0,2 against the alter-
native that “1 > 02 On the null hypothesis "1 o5 the ratio s‘!/s2 is dis-
tributed as Fj29. Referring the ratio 0.183/0.062 = 2.95 to the table of F with
vy =12 and v, =9, you will find that on the null hypothesis the probability
of a ratio as large or larger than 2.95 is about 6%. There is some suggestion
therefore, though not a very strong one, that the inexperienced chemist has a

larger variance.

Confidence Limits for o2/o} for Normally Distributed Data

Arguing exactly as before, on NIID assumptions, A and B are the 1 — «/2 and
«/2 probability points of the F distribution with vl and v, degrees of freedom,.
the lower and upper 1 — « confidence limits for o /0'2 are

52 /s . st/s3
B A

The 1 — a/2 probability points of the F distribution are not given but may be
obtained from the tabulated «/2 points. This is done by interchanging vy and v,
and taking the reciprocal of the tabled value. ‘

For instance, suppose you needed to calculate the 90% limits for the variance
ratio o2/} where, as before, si/s? = 2.95 and the estimates had respectively 12
and 9 degrees of freedom. Entering the F table with vy =12 and v, =9, we
find the 5% probability point B = 3.07. To obtain the 95% probability point,
we enter the F table with vy =9 and v, = 12 and take the reciprocal of the
value 2.80 to obtain A = 1/2.80 = 0.357. Thus the required confidence lim-

its are
2.95 2.95
30—7—096 and —0357 8.26

Lack of Robustness of Tests on Variances

Whereas tests to compare means are insensitive to the normality assumption,
this is not true for the tests on variances. (See, e.g., comparisons made from the
sampling experiments in Appendix 3A.) It is sometimes possible to avoid this
difficulty by converting a test on variances to a test on means (sce Bartlett and
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Kendall, 1946). The logarithm of the sample variance s is much more nearly
normally distributed than is s? itself. Also on the normal assumption the variance
of log s? is independent of the population variance a2. If you have a number of
variances to compare, you could carry out an approximate test that is insensitive
to nonnormality by taking the logarithms of the sample variances and performing
a ¢t test on these “observations.”

Consider the following example. Each week two analysts perform five tests
on identical samples from sources that were changed each week. These special
samples were included at random in the sequence of routine analyses and were
not identifiable by the analysts. The variances calculated for the results and
subsequent analyses are as follows.

Analyst 1 Analyst 2

Week s log 100s? s log 100s3 d =log 100s? —log 100s;

1 0.142 1.15 0.043 0.63 0.52
2 0.09 0.96 0.079 0.90 0.06
3 0.214 1.33 0.107 1.03 0.30
4 0.113 1.05 0.037 0.43 0.62
5 0.082 0.91 0.045 0.65 0.26

Using the paired ¢ test for means, you obtain

d=0352, 53=0226, s3=s4/v/n=0.10ls,

Thus _
d—0 0352
Sg - 0.101

1= = 3.49

To allow for changes from week to week in the nature of the samples analyzed,
we have in this instance performed a paired ¢ test. The value of 3.49 with four
degrees of freedom is significant at the 5% level. Hence, analyst 2 is probably
fhe more precise of the two. In this example there is a natural division of the data
Into groups. When this is not so, the observations might be divided randomly
into small groups and the same device used.

3.6. INFERENCES ABOUT DATA THAT ARE DISCRETE: BINOMIAL
DISTRIBUTION

A discussion of the properties of the binomial distribution was given in Chapter 2.
This would be of value to you if you had steadily lost money to the gambler
Denis Bloodnok by betting how many times his penny would produce four or
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more heads in five throws. Now suppose you manage to get hold of his penny and
you toss it 20 times and 15 turn up heads. Should this confirm your suspicions
that his coin is biased?

You can answer this question by applying the binomial distribution whereby
Pr(y = yo) = (3)p™q"™" (see Chapter 2). Giving Bloodnok the benefit of the
doubt, you might entertain the null hypothesis that his penny was fair (p = 0.5)
against the alternative that it was biased in his favor (p > 0.5). You will find that

Pr(y > 14) = Pr(y = 15)4Pr(y = 16)+Pr(y = 17)+Pr(y = 18)+ ---
= 0015 + 0005 + 0001 + 0000 +0.000
= 0021 -

Thus the observed event is significant at the 2.1% level. You might therefore
regard your suspicion as justified. When the normal approximation to the binomial
is used, as was seen in Chapter 2, a much closer approximation is established by
using Yates adjustment and continuity.

A Confidence Interval for p

Suppose your null hypothesis was that p = 0.8. Then, after obtaining y = 15
heads in n = 20 trials you could again evaluate Pr(y > 14) by adding the binomial
probabilities with p = 0.8. In this way you would obtain, for p = 0.8, n = 20,

Pr(y > 14) = 0.175 4+ 0.218 4+ 0.205 + 0.137 + 0.058 + 0.012 = 0.805

Thus, whereas 0.5 is an implausible value for p, 0.8 is not. Now imagine a series
of values for p confronting the data y = 15, n = 20. As p was increased from
zero, there would be some value p_. less than y/n that just produced significance
at, say, the 2.5% level for the null hypothesis p = p_ tested against the alternative
p > p-. Similarly, there would be some other value p, greater than y/n that
Jjust produced significance at the 2.5% level for the null hypothesis that p = p,
against the alternative that p < p;. The values that do this are p_ = 0.51 and
P+ = 0.94. They are the limits of a 95% confidence interval for p. In repeated
sampling 95% of the intervals calculated this way will include the true value
of p. Confidence limits for p based on the estimated probability p = y/n may
be read from the charts give in Table F at the end of this book or by using an
appropriate computer software program,

Exercise 3.18. Recalculate the confidence limits for p using the normal approx-
imation.

Some Uses of the Binomial Distribution

The following exercises illustrate the use of significance levels and confidence
intervals for the binomial distribution,
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Exercise 3.19. An IQ test is standardized so that 50% of male students in the
general population obtain scores of over 100. Among 43 male applicants at an
army recruiting office only 10 obtained scores higher than 100. Is there significant
evidence that the applicants are not a random sample from the population used
to standardize the test?

Answer: Yes. For p = 1—2 the significance level is 0.0003 on the hypothesis that
p = 0.5 against the alternative p < 0.5. The normal approximation gives
0.0004..

Exercise 3.20. Using a table of random numbers, police in a certain state ran-
domly stopped 100 cars passing along a highway and found that 37 of the drivers
were not wearing seat belts. Obtain confidence limits for the probubility of not
wearing seat belts on the highway in question. Explain your assumptions.

Partial Answer: The 95% confidence limits are 0.275 and 0.475.

Exercise 3.21. In a plant that makes ball bearings, samples are routinely sub-
jected to a stringent crushing test. A sampling inspection scheme is required
such that if out of a random sample of »n bearings more than y fail the batch is
rejected. Otherwise it is accepted. Denote by p the piroportion of bearings in a
large batch that will fail the test. It is required that there be a 95% chance of
accepting a batch for which p is as low as 0.3 and a 95% chance of rejecting a
batch for which p is as high as 0.5. Using the normal approximation, find values
of n and y that will be satisfactory. Hint: Show that to satisfy the requirements
it is necessary that

(yo— 0.5 —0.3n _ 0.5 — (y0 —0.5)

= = 1.645.
vn x 0.3 x0.7 Vnx05x05

Answer: n = 62, y = 25.

Comparing Different Proportions

The effectiveness of mothproofing agents was determined by placing 20 moth
larvae in contact with treated wool samples and noting the number that died
in a given period of time. The experimenters wanted to compare two different
methods A and B for applying the agent to the wool, but it was known that
tests done in different laboratories gave widely different results. A cooperative
experiment involving seven different laboratorics resulted in the data shown in
Table 3.9. Randomization was employed in selecting the particular larvag and
wool samples for each trial.

If the number of larvae dying (or equivalently the percentage dying, 100y/n)
Could be assumed to be approximately normally distributed with constant vari-
ance, a paired ¢ test could be used to assess the null hypothesis that, irrespective
of which application method was used, the mean proportion dying was the same.
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Table 3.9. Comparison of Two Methods of Application of Mothproofing Agent in
Seven Laboratories: Tests with Twenty Moth Larvae

Method of Different Ways of Laboratory
Application Measuring Results. 1 2 3 4 5 6 7
A Number dead 8 7 1 16 10 19 9
Percentage dead 40 35 5 80 50 95 45
Score 43 40 14 71 50 8 47
B Number dead 12 6 3 19 15 20 11
Percentage dead 60 30 15 95 75 100 55
Score 57 37 25 8 67 100 53
Difference in percentages 20 =5 10 15 25 5 10
Difference in scores. 4 -3 11 15 17 14 6
Standard Error of Significance Level (%)

Average Difference Average Difference ¢ Value (Two-Sided Test)

Percentage 1143 3.73 3.06 2.2
Score 10.57 2.63. 4.03 0.7

As you can see from Table 3.9, the test yields the value ¢ = 3.06 with six degrees
of freedom. This is significant at the 2.2% level, suggesting that method B caused
greater mortality of the larvae.

Variance Stabilizing Transformation for the Binomial

The proportion dying in the above experiment varied greatly from laboratory to
laboratory. Indeed, it looks from the data as if p might easily vary from 0.05
to 0.95. If this were so, the variances npg could differ by a factor of 5. Before
treating binomial proportions y/n = p by standard NIID theory techniques using
t statistics (and the analysis of variance and regression methods discussed later),
it is desirable to make a variance stabilizing transformation. Fisher showed that
this could be done by analyzing not p but the “score” x given by

44
sinx =/p  where p= -
A graph of the score x* needed to stabilize the variance versus the proportionp
(measured as a percentage) is shown in Figure 3.16. Whereas the variance of
p is very different for various values of p, the variance of x is approximately
constant. It also turns out that x is much more nearly normally distributed than
p. You can see from the graph that this stabilization is achieved by stretching
out the scale at the ends of the range of x.

* Measured in grads (100 grads = 90°)
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Figure 3.16. Variance stabilizing transformation for the binomial: score x as a function of the
percenmtage 100p. . .

To carry out the modified test, you first transform the percentages to scores,
for example by using the graph in Figure 3.16. Thus the entry 40% in the first
column of the table transforms into a score of 43, and so on. A paired ¢ test
applied to the scores gives a value t = 4.03, which is even more significant than
that obtained from the raw percentages. Because the assumptions on which the
1 test is derived are more nearly met, the transformed scores will on average
produce tests of greater sensitivity. The reason the transformation produces a
marked difference in the significance level for this example is that the observed
values y/n cover a wide range. If this were not so, the transformation would have
had less effect on the significance level.

The variance of the transformed score x is very nearly independent of p
and has a theoretical value of 1013/n. Even though this theoretical variance is
available, it makes the assumiption that the value of the parameter p does not
change from trial to trial. Whenever possible, it is better to employ a variance
calculated from the data. More explicitly, in this example it could be argued
that each transformed value has a theoretical variance of 1013720 = 50.7 and
therefore the test should be based on this value. If you use this route, however,
you must make a direct assumption of the exact applicability of exact binomial
sampling. It is always best to avoid assumptions you do not need to make.

Does the Probability Vary? Sampling Inspection of Ball Bearings

.EaCh day 20 ball bearings randomly sampled from routine production are sub-
Jected to a crushing test. The number of bearings failing the test on 10 successive
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days are as follows:

Day 1 2 3 45 6 7 8 9 10
Number failingoutof 20,y 8 4 10 6 2 3 7 12 5 7

Is there evidence of day-to-day variation in the probability p of failure?

Consider the null hypothesis that p (the probability that a bearing fails) does
not vary from day to day. On this hypothesis the distribution of (y — n)/o =
(y —np)//npq may be approximated by a standard normal distribution. We do
not know p, but an estimate is provided by p =7¥/n =6.4/20 = 0.32. Now
for a sample of k observations from a fixed binomial distribution, Z'J‘.z"(_vj -
np)?/npg is approximately distributed as a x?2 distribution with & — 1 degrees
of freedom. Thus, to test the null hypothesis, the value

D0 =64 8640

= = 19.85
20 x 032 x 0.68  4.352 2

may be referred to a x? distribution with k — 1 =9 degrees of freedom. This
value yields significance at the 1.88% level. There is evidence, therefore, of real
variation from day to day in failure rates as measured by the crushing test.
Suppose now that the value of p differs from day to day about its average
value Wlth variance 0‘ . Then it turns out that a will not be given by npg
but by o? npq + n(n - l)a that is, 9.600 = 4. 352 + ’%800 A (very rough)
estimate of or is therefore (9. 600 4.352)/380 = 0.014. This yxelds an estimate

standard deviation op = +/0.014 = 0.12, which is relatively large in comparison
with the estimated probability p =73%/n =0.32. You would want to find out
why such large variation in p occurred. The variation could arise, for example,
from inadequacies in the test procedure or in the sampling method or because of
inadequate process control. Further iterations in the investigation would take up
these questions. ~

3.7. INFERENCES ABOUT FREQUENCIES (COUNTS PER UNIT):
THE POISSON DISTRIBUTION

As explained in Chapter 2, the Poisson distribution is the limiting distribution to
which the binomial distribution tends as p is made smaller and smaller and n is
made larger and larger so that 77 = np remains finite. 1t is often used to represent
the frequency y in time or space of rare events such as the number of blemishes
on a painted panel, the number of bacterial colonies on a petri dish, and the
number of accidents occurring in a given time period. Its distribution function is

e n?
y!

. . . iy .
where 7 is the mean number of events per unit. The variance o~ of the Poisson
distribution also equals ».
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A Significance Test

A supervisor of a raisin bran production unit suspected that raisins were not
being added to the cereal in accordance with process specifications. In a test the
quality control supervisor randomly selected one box per hour over a 12-hour
period, thoroughly shook the box, and counted the raisins in one standard-sized
scoopful. The specification required a mean of 36 raisins per scoopful. Random
sampling variation would thus produce Poisson distributed frequencies (counts)
with mean 36 and standard deviation o = /36 = 6. The inspector’s data were
as follows:

Hour 1 2 3 4 5 6 7
Number of 43 46 50 40 38 29 31 3
raisins

in a

scoopful

Average frequency: 40.83

8§ 9 10 11 12 Total
5 41 52 48 37 490

Comparing the observed frequencies y; with the hypothesized mean n = 36 pro-
vides a quantity approximately distributed as chi square. Thus

Z(}’j
7

= 24.06 ~ x},

— ) Z()’j — 36)° _ 866
- 3 =

] 6 36

Entering the chi-square tables with 12 degrees of freedom, you will find this value
to be significant at about the 2% point. Two possible reasons for the discrepancies
between observed and expected frequencies would be (a) the mean frequency of
raisins 7 is greater than 36 and (b) the variance from box to box is greater than
can be accounted for by random sampling variation,

To test the first possibility, you could use the additive property of the Poisson
distribution. The sum of the frequencies 490 would be compared with the value
432 = 12 x 36 expected if the mean frequency per scoopful were really 5 = 36.
If you refer the value (490 — 432)2/432 = 7.79 to a chi-square table with one
degree of freedom, you will find it is significant at about the 0.5% level. It appears
therefore that the mean frequency is almost certainly greater than 36, the value
expected if the process was operating correctly.

For the second possibility, for samples drawn from a Poisson distribution of
unknown_ mean the quantity Z‘;l( ¥j — ¥)?/¥ will be approximately distributed
as x? with k — | degrees of freedom. For this example, then, ¥ = 490/12 =

40.83 and )
> (v —40.83)

40.83 = 1434

Entering in the chi-square table with k — 1 = 12 — 1 = 11 degrees of freedom
Produces a significance level of about 20%.
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This analysis indicates therefore that there are discrepancies from the specifi-
cation frequency and that they are likely due to an excessively high mean level
rather than to variation from hour to hour.

Exercise 3.22. The first step that should be taken is, as always, to plot the data.
Make such a plot for the above example and suggest what additional enquiries
the supervisor might make in furtherance of this interactive investigation.

Confidence Limits for a Poisson Frequency

‘Suppose you have an observed value yg for a Poisson distributed frequency. What
are the 1 — o confidence limits n_ and 5, for the mean frequency n? As before,
n— is some value less than y, that just produces a result significant at the /2
level against the alternative n > n~. Correspondingly, 1, is some value greater
than yo that just produces significance at the a/2 level against the alternative
n < 14. Itis tedious to compute these values directly from the distribution. The
computer can supply these limits or alternatively Table G at the back of the book
gives the 95 and 99% limits for yo = 1,2, ..., 50.

Approach to Normality of the Poisson Distribution When 7 Is Not
Too Small

As the mean frequency (count) increases, the Poisson distribution approaches
normality quite quickly, as was illustrated in Figure 2.154, which showed the
Poisson distribution with mean 7 = 6% = 2.1 (representing, from Chapter 2, Min-
nie’s and Henry’s accident distributions). Figure 2.15b (on page 56) showed a
Poisson distribution with n = 0% = 10. The former was quite skewed, but the
latter could be fairly well approximated by a normal distribution with mean and
variance equal to 10 using Yates’s adjustment as with the binomial.

Variance Stabilizing Transformation for the Poisson Distribution

You can often analyze frequency data to an adequate approximation by using
standard normal theory procedures involving ¢ statistics and the analysis of vari-
ance and regression techniques that are discussed later. However, because the
variance of a Poisson variable is equal to its mean, contrary to the assumptions
of normal theory, the variance alters as the mean changes. If the frequencies cover
wide ranges, it is best to work with scores obtained by an appropriate transfor-
mation. The appropriate variance stabilizing transformation is in this instance the
square root. Thus, if y is distributed as a Poisson variable, the score ,/y has an
approximately constant variance equal to 0.25.

3.8. CONTINGENCY TABLES AND TESTS OF ASSOCIATION

Since for the Poisson distribution the mean 7 is equal to the variance, for suf-
ficiently large n the quantity (y — n)/./7 is distributed approximately as a unit
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normal deviate and (y — n)?/n is distributed as ¥? with one degree of free-
dom. Also, from the additive property of x2 for n cells 3.7 (y; — n;)¥n; is
distributed approximately as x? with .n degrees of freedom. These facts may
be used for the analysis of “contingency” tables as is illustrated by the follow-
ing example.

The data in Table 3.10 show the results from five hospitals of a surgical pro-
cedure designed to improve the functioning of certain joints impaired by disease.
In this study the meanings to be attached to “no improvement,” “partial func-
tional restoration,” and “complete functional restoration™ were carefully defined
in terms of measurable phenomena.

These data, when expressed as percentages, suggest differences in success at
the five hospitals. However, percentages can be very misleading. For example,
28.6% can, on closer examination, turn out to represent 2/7 or 286/1000. To
make an analysis, therefore, you must consider the original data on which
these percentages were based. These are the frequencies shown in large type
in Table 3.11a.

An important question was whether the data were explicable on the hypoth-
esis that the mean frequencies in the various categories were distributed in the

v

Table 3.10. Results (Percentages) from a Surgical Procedure in Five Hospitals

Hospital
A B C D E Overall Percentage
No improvement 27.7 16.1 10.1 16.4 524 24.5
Partial restoration 383 323 45.6 43.8 35.4 40.6
Full restoration 34.0 51.6 44.3 39.8 12.2 349

Table 3.11a. Results of Surgical Procedures: Original Frequencies Shown in Bold
Type, Expected Frequencies in Upper Right Corner, Contribution to x? in Top Left
Corner of Each Cell

Hospital

A B C : D E Totals
NO_ 0.19 11.5310.89 7.60 |6.67 19.37(3.44 31.39|26.05 20.11
| improvement | 13 5 8 21 43 90
Pa{tiul _ 0.06 19.08/0.53 12.59]0.48 32.07|0.31 51.97| 0.55 33.29
| improvement 18 10 36 56 29 149
Complete 0.01 16.3912.49 10.81{2.01 27.55|0.91 44.64]12.10 28.60
| restoration 16 16 35 51 10 128
Ec_)tals 47 31 79 128 82 367

x? value 56.7, degrees of freedom 8, significance level < 0.001%
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same proportions from hospital to hospital. If the mean (expected) frequencies
were exactly known for each cell in the table, the x? approximation mentioned
above could be used to test the hypothesis. However, the only evidence of
what the expected frequencies should be on this hypothesis comes from the
marginal totals of the data. For instance, from the right-hand margin, 90 out
of 367, or 24.5%, of all patients showed no improvement. Since there was
a total of 47 patients from hospital A, 24.5% of 47, or 11.53, would be the
expected frequency of patients showing no improvement in hospital A if the
null hypothesis were true. In a similar way the other empirical expected fre-
quencies can be computed from the marginal totals. In general, the expected
frequency #; ; to be entered in the ith row and jth column is' F; F;/F, where
F; is the marginal frequency in the ith row and F; is the marginal frequency
in the jth column and F is the total frequency. These values are shown in
the top right-hand corner of each cell. The value of chi square contributed
by the cell in the ith row and jth column, (y; — f],‘j)z/ﬁ,‘j, is shown in the
top left-hand corner of each cell. For the first entry the contribution is (13 —
11.53)2/11.53 = 0.19. Adding together the 15 contributions gives a total chi-
square value of 56.7.

Fisher showed that, when empirical expected frequencies were calculated from.
marginal totals, the chi-square approximation® could still be used but the correct
number of degrees of freedom for a table with r rows and ¢ columns is (r —
I)(¢ — 1). This corresponds to. the number of cells in the table less the number
of known relationships (constraints) that the method of calculation has imposed
on the expected values. Thus the calculated value of 56.7 should be referred
to a chi-square table with 2 x 4 = 8 degrees of freedom. The value is highly
significant. Thus, there is little doubt that the resuits from hospital to hospital
are different.

Now hospital E was a referral hospital. It seemed relevant therefore to ask
two questions:

1. How much of the discrepancy is associated with differences between the
referral hospital on the one hand and the nonreferral hospitals taken together
on the other?

2. How much of the discrepancy is associated with differences among the
four nonreferral hospitals?

Tables 3.11b and 3.11¢, which have the same format as Table 3.11a, permit
the appropriate comparisons to be made. It is evident that the differences are
mainly between the referral hospital £ and the nonreferral hospitals. Differ-
ences in Table 3.11c, among nonreferral hospitals are readily explained by sam-
pling variation.

You should notice that the discrepancies mainly arise because the results from
the referral hospital arc not as good -as those from hospitals A, B, C, and D. This

*The x? approximation is reasonably good provided the expected frequency in each cell is not less
than 5.
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Table 3.11b. Hospital E (Referral) Compared to Hospitals A, B, C and D

(Nonreferral)
[ Hospital
Restoration A+B+C+D E Total
—T\Ionc 7.50 69.89 26.06 20.11
47 43 | 90
" partial 0.16 11571 055 3329
120 29 149
Complete 3.48 99.40 12.10 28.60
118 10 128
Totals 285 7 82 367
x?2 value 49.8, degrees of freedom 2, significance level < 1%
Table 3.11c. Comparison of Hospitals A, B, C and D (Nonreferral)
Hospital
A B C D Total
355 775 | 000 511 | 194 13.03 | 0.00 2111
13 5 : 8 21 47
016 1979 | 071 13.05 | 0.23 33.26 | 0.08 53.89
18 10 36 56 120
061 1946 | 0.78 1284 | 0.16 3271 | 0.18 53.00
16 16 35 51 118
47 31 79 128 285

x? value 8.3, degrees of freedom 6, significance level about 20%
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might be expected because typically the more difficult cases are sent to the
referral hospital.

The 2 x 2 Table: Comparison of Repair Records for Television Sets

A special case of some importance occurs for theé 2 x 2 contingency table when.
there are only two rows and two columns, and consequently the resulting chi
square has only one degree of freedom. For instance, the data in Table 3.12 were
obtained by a consumer organization from 412 buyers of new color television
sets made by manufacturers A and B. The frequencies in the column headed
“required service” denote the number of customers whose sets necded service at
least once during a 10-year period. |

A null hypothesis of interest is that the proportions requiring service are the
same for both manufacturers, observed discrepancies being due to sampling vari-
ation. To test the hypothesis, expected frequencies may be calculated from the
marginal totals as before. These are shown in the top right-hand corner of the
cells in the table. By adding the contributions from the four cells, we obtain
x% = 15.51, which is referred to the chi-square table with one degree of freedom.
This gives a significance probability of less than 0.1%. Thus, if these samples.
can be regarded as random samples from the two manufacturers, there is little
doubt that sets made by manufacturer A have a better repair record than those
by manufacturer B.

Yates’s Adjustment

For the 2 x 2 contingency table, where the chi-square approximation is most
strained, the test tends to exaggerate significance. A considerably improved
approximation is obtained by applying Yates’s adjustment, discussed earlier. In
the present context this adjustment consists of changing the observed frequencies
by half a unit to give smaller deviations from expected values. For the color
television data, for example, you should change the observed frequencies from
111, 162, 85, 54 to 111.5, 161.5, 84.5, 54.5, which yields a slightly smaller value
for x> of 14.70 again with a significance probability of less than 0.1%.

Table 3.12. Comparison of Two Brands of Color
Television Sets

Did Not
Brand | Required Service | Require Service | Total
A 274 129.87 249 143.13
111 162 273
B 538 66.13 489 7287
85 54 139
Total 196 216 412
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APPENDIX 3A. COMPARISON OF THE ROBUSTNESS OF TESTS TO
COMPARE TWO ENTITIES

In this chapter, as a means of introducing some elementary principles of statis-
tical analysis and design, you were deliberately confronted with a dilemma. The
comparison of two means requires either (1) a long sequence of previous records
that may not be available or (2) a random sampling assumption that may not be
tenable. As was said earlier, practitioners might be forgiven for believing that a
solution to these difficulties would be provided by what have been misleadingly
called “distribution free” tests, also referred to as “nonparametric tests.” For illus-
tration, we compare under nonstandard conditions the performance of the ¢ test
and that of a widely used nonparametric test due to Wilcoxon.* We denote this
test by W and apply to the analysis of the two samples of 10 observations in
Table 3A.1.
You make the Wilcoxon test as follows:

1. Rank the combined samples in order of size from smallest to largest (here a
—13 lies to the left and hence is “smaller” than a —10). Ties are scored with
their average rank. The ranking of the observations is shown in Table 3A.1.

2. Calculate the sum of the ranks for methods A and B:

For A:2+34+4+75+95+95+-.-4+19=955.
ForB: 1 +54+6+75+11+14+..-4+20=114.5.

3. Refer one of the sums to the appropriate table. Alternatively, for equal
groups of size n, if § is the larger of two sums, an approximate significance

level is obtained by referring zg = /12[S — 0.51(2n + 1))/Inv2n + 1] to

Table 3A.1. Wilcoxon Example: Comparing the Means of Two samples of Ten ,
Observations Each

Rank 1 2 3 4 5 6 75 15 95 95
Observation 79.3 797 814 817 826 832 837 837 845 84S
Method B A A A B B A B A A
Rank 11 12 13 14 15 16 17 18 19 20
Observation 847 848 851 8.1 863 873 885 89.1 897 919
Method B A A B B A B B A B

* f.:rank Wilcoxon was a scientist of the first rank who had many years of practical experience working
with experimenters on the design and analysis of experiments at Boyce Thomson Institute and later
at Lederle Laboratories. He was well aware of the essential role that randomization played in the
strategy of investigation and its importance for validation of significance tests which later writers
called “distribution free.” His motivation for introducing this test was not to obtain a procedure that
Was insensitive to nonnormality. At a time when aids to rapid computing were not available, he often
needed to make very large numbers of significance tests every day. He devcloped his test because it
could be done quickly. For this purpose it was extremely valuable.
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the tables of the unit normal distribution. For this example zp = 0.718 and
Pr(z > 0.718) = (.236. This probability of 23.6% is comparable to the
level 19.5% given by the r test. which also assumes random sampling.

As we explained, this test is not really distribution free but makes the dis--
tributional assumption of exchangeability. It gives erroneous results when that
assumption is inappropriate. In particular the distribution free test assumes, as
does the parametric test, that the observations are not autocorrelated. However,
observations laken in.sequence are unlikely to be independently distributed. For
example, records from successive plots in an agricultural field trial are likely to
be serially correlated* and so are successive observations in time.

Table 3A.2. Percentage of 20,000 Results Significant at the 5% Level When the
Mean Difference § = 0 Using the ¢ Test (¢f) and Wilcoxon Test (W)

Parent Distribution

ANERY ANGENVAN

Normal Skew? Contaminated
normai®

Rectangular

o = Autocorrelation hetween Successive Qbservations

A. WITHOUT RANDOMIZATION

P
0.0 t 5.1 t 5.0 t 4.7 t 50
W 44 W 43 W 45 W 45
-0.4 r 0.8 t 06 t 0.5 r 1.8
w07 w 0S5 W 04 w 13
+0.4 1 195 t 20 r 19.6 r 130
w173 W 176 W 18.2 W 129
B. WITH RANDOMIZATION
Y
0.0 r 5.0 t 50 t 48 t 49
W 44 W 44 W 44 W 43
04 r 4.7 r 5.2 tr 438 t S.1
W 4.0 W 45 W 44 W 4.5
+04 r 49 r 49 r 49 r 5.0
W 41 w41 w44 w44

4 A chi square with four degrees of freedom.
b A normal distribution randomly contaminated with 109 of data out 30, The symbol p indicates

the serial corrclation of adjacent observations.

*This is of course the reason for arranging the trials within blocks and for randomization.
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Table 3A.2 shows the effects of violations of the assumption of normality and
independence of crrors on the performance of the unpaired ¢ test and the corre-
sponding nonparametric W test. As expected, the ¢ test was very little affected
by severe nonnormality but both tests were greatly affected by serial correlation
of the errors. So the use of the “nonparametric™ procedure in place of r would
protect you from circumstances that were not a threat while leaving you equally
vulnerable to circumstances that were.

The results in Table 3A.2 were obtained by taking two samples of 10 observa-
tions and making a ¢ test () and a Wilcoxon test (W) for a difference in means.
The sampling was repeated 20,000 times and the percentage of results significant
at the 5% level was recorded. Thus for these tests made where there was no
difference in the means the percentage should be close to 5%.

To determine the effect of major violations of the assumption of normality,
data were generated from four sets of independently distributed random vari-
ables u; having respectively a rectangular distribution, a normal distribution, a
highly skewed distribution (a x? distribution with four degrees of freedom), and
a “contaminated” normal distribution with 10% of the observations randomly
occurring at either 430 or —30. :

From the first row of the table where the errors are uncorrelated you will see
that the 5% level for the ¢ test is affected very little by the gross violation of the
normality assumption. In the first row of Table 3A.2, marked without random-
ization, the observations had independent errors ¢; = ;. In the second and third
rows the data were not independent but were generated respectively so that suc-
cessive errors had autocorrelations equal to p; = 0.4 and p; = —0.4." You can
see that these departures from assumptions have dramatic consequences that are
much the same for both the r test and the W test but neither are much alfected
after randomization.

Comparison of variances

Although tests for comparisons of means are not affected very much by the
distributional nonnormality, this happy state of affairs does not extend to the
comparison of variances. Thus, for the four distributions used above, the percent
probabilities of exceeding the normal theory 5% for an F test based on two
samples of 10 observations each are

Rectangular Normal Skew Contaminated Normal

1.1 5.0 144 9.2

Each result is based, as before, on 20,000 repetitions.

The errors ¢; were generated by a “first-order autoregressive process™ with €; = u; + puy-y with
the p's appropriately chosen and the u’s NIID random variables. For this process p is the first-order
dutacorrelation between adjacent observations.
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Table 3B.2. Reference Set of Differences between Averages of Two Adjacent Sets of
10 Successive Batches?

-0.43
-1.24
-0.15
-0.02
-0.08
-0.15
-0.79
—0.38
-0.26
-0.10
0.82
0.90
—0.68
—0.66
-1.25
-0.27
0.13
0.21
0.24
0.29
-0.18
0.43
147
1.33
248
1.01
1.33
0.29
0.57
0.95
-0.42

-0.36
-0.52
—133
~1.81
—0.36
-1.02

0.21
-0.29
-0.91

0.64
-0.17
=0.17

0.96

0.78
-0.13

0.30

-0.34
0.7]

0.68

0.53
1.01
1.46
0.76
1.04
135
1.37
0.88
—0.12
0.20
-0.12
-0.37
—-1.38
—0.90
-0.80
—1.04
—-1.94
-0.90
-0.76
—0.63
-0.94

-0.32
-0.21
-0.36
-0.93
—0.75
0.13
0.39
0.38
-0.22
0.20
-0.37
—0.16
0.12
0.80
0.54
0.08
-1.01
-0.55
-0.05
-0.30
0.33
0.79
-0.11
—-0.42
0.30
1.13
1.25
0.97
0.68
0.68
-045
—0.62
-0.03
0.54
-0.43
—-1.24
-0.64
-0.86
-1.10
—0.16

1.09
0.87
.11

-0.12

0.67
1.01
0.74

0.98

1.87
0.66
—0.04
~0.60
—0.93
0.02
~0.50
~0.51
-0.67
~0.78
~1.15
—-1.07
—0.30
0.78
0.95
—0.17
0.61
0.74
0.67
0.79
0.66
1.00
—0.11
—0.40
—0.45
0.10
—0.30
-0.97
-0.82
~1.53
-1.20
~1.10

-0.43
—-1.32
-1.30
—0.64
—0.58
0.37
0.03
0.75
0.44
0.17
-0.23
0.97
0.72
0.98
-0.21
-0.81
0.29
0.49
—0.58
-0.30
—0.01
—0.61
0.40
—1.06
-0.13
—0.52
~1.07
—1.40
0.11
0.46
—0.01
0.33
-0.87
-0.18
0:51
1.39
0.61
0.50
0.64
—0.53

“ Differences that exceed +1.30 are in bold type.
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QUESTIONS FOR CHAPTER 3

1. What is meant by a valid significance test?

2. What is a reference distribution? What are the possibilities and advantages
derived from (a) an external reference set or (b) a randomized reference set?

3. What is randomization and what is its value?

4. What is meant by exchangeability?

S. What is meant by a “distribution free” test? Comment.

6. How can experiments be randomized in practice? Be specific.

7. Why can probabilities calculated on NIID assumptions be seriously affected
by autocorrelation of observations?
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8. What is a randomization distribution?

9. What is the value of pairing and blocking? In practice, how can a design
be blocked?

10. Can you find (or imagine) an example of an experiment in your own field
in which both randomization and blocking were (or could be) used?

11. Can you describe an actual situation from your own field in which trouble
was. encountered because the data were not obtained from a randomized
experiment? If not, can you imagine one?

12. Will conducting (a) a nonparametric test or (b) a randomization test protect
you from the effects of “bad values”? Comment.

13. How might you discover and what would you do about suspected “‘bad
values™? Can you imagine a situation where wrong inferences could be made
because of bad values?

14. Given that you have performed a significance test for a particular , how
would you construct a 95% confidence interval for §?

15. If na = ng, is the 95% confidence interval for § calculated using paired data
always shorter than that using unpaired data? Explain how you would decide
which experimental strategy to employ, paired or unpaired. How would you
verify each interval using a randomization test?

16. Are tests on variances more or less sensitive to departures from assump-
tions? Comment.

PROBLEMS FOR CHAPTER 3

1. A civil engineer tested two different types (A and B) of a special reinforced
concrete beam. He made nine test beams (five A’s and 4 B’s) and mea-
sured the strength of each. From the following strength data (in coded units)
he wants to decide whether there is any real difference between the two
types. What assumptions does he need to draw conclusions? What might he
conclude? Give reasons for your answers.

Type A 67 80 106 83 89
Type B 45 71 87 53

2. Every 90 minutes routine readings are made of the level of asbestos fiber
present in the air of an industrial plant. A salesperson claimed that spray-
ing with chemical S-142 could be beneficial. Arrangements were made for
a comparative trial in the plant itself. Four consecutive readings, the first
without S-142 and the second with S-142 were as follows: 8, 6, 3, and 4. In
light of past data collected without S-142, given below, do you think S-142
works? Explain your answer.
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Asbestos Data, 112 Consecutive Readings

November2 910 9 8 9 8 8 8 7 6 91011 91011
November3 11111110111213121312141514121313
November4 12131313131310 8 9 8 6 7 7 6 § 6
November5 5 6 4 5§ 4 4 2 4 5 4 5 6 5 5 6 5
November6 6 7 8 8 8 7 910 910 9 8 9 8 7 7
November7 8 7 7 7 8 8 8 8 7 6 5 6 5 6 7 6
November8 6 S 6 6 543 4556567635

Nine samples were taken from two streams, four from one and five from the
other, and the following data on the level of a pollutant (in ppm) obtained:

Stream1: 16 12 14 11
Stream 2: 9 10 8 6 5

. It is claimed that the data prove that stream 2 is cleaner than stream 1. An

experimenter asked the following questions. When were the data taken? All
in one day? On different days? Were the data.taken during the same time
period on both streams? Where the stream temperatures and flows the same?
Where in the streams were the data taken? Why were these locations chosen?
Are they representative? Are they comparable?

Why do you think she asked these questions? Are there other questions she
should have asked? Is there any set of answers to these questions (and others
you invent) that would justify the use of a ¢ test to draw conclusions? What
conclusions?

- Fifteen judges rated two randomly allocated brands of beer, A and B, accord-

ing to taste (scale: 1 to 10) as follows:
Brand A: 2 4 2
8 3

2 1 9 9 2
Brand B: 5 37 7 4
Stating assumptions, test the hypothesis that n4 = np against the alternative
that 74 # np. Can you think of a better design for this experiment? Write

precise instructions for the conduct of your preferred experiment.

These data were obtained in a comparison of two different methods for
determining dissolved oxygen concentration (in milligrams per liter):

Sample 1 2 3 4 5 6
Method A (amperometric) 2.62 265 279 283 291 3.57
Method B (visual) 273 280 287 295 299 3.67

Estimate the difference between the methods. Give a confidence interval
for the mean difference. What assumptions have you made? Do you think
this experiment provides an adequate basis for choosing one method other
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the other? In not, what further experiments and data analysis would you
recommend? Imagine different outcomes that could result from your analysis
and say what each might show.

The following are smoke readings taken on two different camshafts:

Engine CamshaftA Camshaft B

1 27 2.6
2 2.9 2.6
3 3.2 29
4 35 3.3

Suppose your supervisor brings you these data and says that one group
claims there is essentially no difference in the camshafts and the other says
there is a difference. What question would you ask about this experiment?
What answers would make a further analysis useful? What further analysis?
Assuming any answers to your questions that you like, write a report on the
experiment and the data. Somewhere in your report explain the difference
between “statistically significant” and “technically important.”

Two different designs for a solar energy collector were tested with the fol-
lowing results. The measured response was power (in watts).

design A 1.8 197 11® 140
design 8 1.9 2.1% 156 1 5®

The data were collected at eight different comparable time periods. The
random order of the tests is indicated by the superscripts in parentheses. Is
there evidence that a statistically significant difference exists between the
mean values for the power attainable from these two designs? Do you need
to assume normality to make a test?

In a cathode interference resistance experiment, with filament voltage con-
stant, the plate current was measured on seven twin triodes. Analyze the data
given below. Is there any evidence of a systematic difference between the
plate current readings of compartments A and B?

Plate Current Readings

Tube A B

] 1.176 1.279
2 1.230 1.000
3 1.146 1.146
4 1.672 1.176
5 0.954 0.699
6 1.079 1.114
7 1.204 1.114

Explain your assumptions.
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9.

10.

11.

12.

13.

An agricultural engineer obtained the following data on two methods of
drying corn and asked for statistical analysis;

Drying Rate
VWith Preheater Without Preheater

16 20
12 10
22 2]
14 10
19 12

What questions would you ask him? Under what circumstances would you
be justified in analyzing the data using (a) a paired ¢ test, (b) an unpaired 1
test, or (¢) something else? Analyze the data for options (a) and (b).

An agricultural engineer is trying to develop a piece of equipment for pro-
cessing a crop immediately after harvesting. Two configurations of this
equipment are to be compared. Twenty runs are to be performed over a
period of 5 days. Each run involves setting up the equipment in either con-
figuration I or configuration II, harvesting a given amount of crop, processing
it on the equipment, obtaining a quantitative measure of performance, and
then cleaning the equipment. Since there is only one piece of equipment, the
tests must be done one at a time. The engineer has asked you to consult on
this problem. '

(a) What questions would you ask her?

(b) What advice might you give about planning the experiment?

(c) The engineer believes the most accurate experiment requires that an equal
number of runs be conducted with each configuration. What assumptions

would make it possible to demonstrate in a quantitative way that this
is true.

Assuming a standard deviation o = 0.4, calculate a 90% confidence interval
for the mean reaction time using the following data (in seconds):

14 12 1.2 13 15 1.0 21 14 1.1
Carefully state and criticize any assumptions you make. Repeat this problem
assuming o is unknown..

Five student groups in a surveying class obtain the following measurements
of distance (in meters) between two points:

420.6 421.0 421.0 420.7 4208

Stating precisely your assumptions, find an approximate 95% confidence
interval of the mean measured distance.

Given the following data on egg production from 12 hens randomly allocated
to two different diets, estimate the mean difference produced by the diets
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14.

16.
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and obtain a 95% confidence interval for this mean difference. Explain your
answer and the assumptions you make.

Diet A 166 174 150 166 165 178
Diet B 158 159 142 163 161 157

Two species of trees were planted on 20 randomly selected plots, 10 for A
and 10 for B. The average height per plot was measured after 6 years. The
results (in meters) were as follows:

A 32 27 30 27 1.7 33 27 26 29 33
B 28 27 20 30 21 40 15 22 27 25

Obtain a 95% confidence interval for the difference in mean height.

A chemical reaction was studied by making 10 runs with a new suppos-
edly improved method (B) and 10 runs with the standard method (A). The
following yield results were obtained:

Method A Method B

54,6110 74,902
45810 78.3(49
57.410 80.4(1%
40.1@ 58.7®
56_3(20) 68.1 (8)
51.548 64.7
50,7 66.5"
64.5(1%) 73.5%
52.6V 81.017
48.6° 73.74%

The superscripts in parentheses denote the time order in which the runs were
made. Comment on the data and analyze them.

(These data are taken from U.S, Patent 3,505,079 for a process preparing a
dry free-flowing baking mix.) Five recipes were used for making a number of
cakes, starting from two different types of premix, A and B. The difference
between the two premixes was that A was aerated and B was not. The
volumes of the cakes were measured with the following results:

Recipe A Recipe B

1 43 65
2 90 82
3 96 90
4 83 65
5 90 82
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17.

18.

The recipes differed somewhat in the amount of water added, beating time,
baking temperature, and baking time. The patent claims that significantly
greater volume was obtained with A. Do these data support this claim?
Make any relevant comments you think are appropriate. Include in your
answer a calculated 95% confidence interval for the true ditference between
the volumes obtained with A and B. State any assumptions you make,

The following are results from a larger study on the pharmacological effects
of nalbuphine. The measured response obtained from 11 subjects was the
change in pupil diameter (in millimeters) after 28 doses of nalbuphine (B)
or morphine (A):

A +24 4008 408 +2.0 +19 +10
B +04 +02 -03 +08 0.0

Assume that the subjects were randomly allocated to the drugs. What is the
95% confidence interval for ng — n4? What is the 90% confidence interval?
State your assumptions. [These data are from H. W, Ellxott G. Navarro, and
N. Nomof (1970), J. Med., 1, 77.]

In a set of six very expensive dice the pips on each face are diamonds. It
is suggested that the weights of the stones will cause “five” and “six™ faces
to fall downward and hence the “one” and “two” faces to fall upward more
frequently than they would with technically fair dice. To test the conjecture
a trial is conducted as follows: The observance of a one or two on a die is
called a success. The whole set of six dice is then thrown 64 times and the
frequencies of throws with 0, 1, 2, ..., 6 successes are as follows:

Number of dice showing a “success” 0 1 2 3 4 5 6

Observed frequency 0 4 19 15 17 7 2

(a) What would be the theoretical probability of success and the mean and
variance of the frequency distribution if all the dice were fair?

(b) What is the empirical probability of success calculated from the data,
and what is the sample average and variance?

(c) Test the hypotheses that the mean and variance have their theoreti-
cal values.

(d) Calculate the expected frequencies in the seven cells of the table on the
assumption that the probability of success is exactly 1.

(e) Make a chi-square test of agreement of the observed with the expected
frequencies (combining the frequencies for zero and one successes and
also for five and six successes so that the expected frequency within
each cell is greater than 5). The number of degrees of freedom for the
test is the number of frequencies compared less 1, since the total of the
expected frequencies has been chosen to match the actual total number
of trials.
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19.

20.

21.
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(F) Calculate the expected frequencies based on the empirical estimate of
probability, and make a chi-square test of agreement with the observed
frequencies. The number of degrees of freedom is now the number of fre-
quencies compared less 2, since expected frequencies have been chosen
so that the total frequency and the mean both match the data.

(g) Can you think of a better design for this trial?

The level of radiation in the control room of a nuclear reactor is to be
automatically monitored by a Geiger counter. The monitoring device works
as follows: Every tenth minute the number (frequency) of “clicks™ occurring
in ¢t seconds is counted automatically. A scheme is required such that, if this
frequency exceeds some number ¢, an alarm will sound. The scheme should
have the following properties: If the number of clicks per second is less than
4, there should be only about 1 chance in 500 that the alarm will sound,

but if the number of clicks reaches 16, there should be only about 1 chance

in 500 that the alarm will not sound. What values should be chosen for ¢
and ¢?

Hint: Recall that the square root of a Poisson frequency is roughly normally
distributed with a standard deviation 0.5. (Answer: t = 2.25, ¢ = 20, closest
integer to 20.25.)

Check the approximate answer given for the above problem by actually
evaluating the Poisson frequencies.

Consider the following data on recidivism as measured by the rearrest of
persons who have committed at least one previous offense. There are a
number of points on which you would wish to be reassured before drawing
conclusions from such data. What are they? Assuming that your questions
received satisfactory answers, what conclusions could you draw from the
following data?

Treatment Received

No Therapy Group Therapy Individual Therapy

Back in prison within 1 year 24 10 41
Back in prison in 1-10 years 25 13 32
Never back in prison 12 20 9
Total 61 43 82

22,
23.

Why is a set of confidence intervals more useful than a significance test?

What is the formula for the confidence interval for the difference between
two means for a paired design? For an unpaired (fully randomized) design?
How are these formulas similar? How are they different? How would you
verify each interval using a randomization distribution?



PROBLEMS FOR CHAPTER 3 131

24.

25.

26.

27.

28.

29,

Suppose you are given data from a simple comparative experiment in which
n 4 observations have been made with treatment A and npg observations with
treatment B. It is necessary that ny = ng? Suppose that n4 = ng and the
data are paired. Will the equation for the paired data always give a shorter
interval? Why not?

Think of a specific problem of comparing two treatments preferably from
your own field. How would you organize an experiment to find out which
one was better? What are some of the problems that might arise? How would
you analyze the results? How could past data be used to assist in choosing
the design and the number of runs to be made?

Let y be the number of sixes recorded on the throw of three dice. Find
Pr(y = 0), Pr(y = 1), Pr(y = 2), Pr(y = 3), Pr(y > 1), Pr(y < 3). Suppose
that in 16 throws of a single die a six appears on 8 occasions. Does this
discredit the hypothesis that the die is fair? Use these data to obtain a 95%
confidence interval for p.

Possibly meaningful signals have been obtained from outer space. The data
take the form of the number of pulses y received in each sequence of 127
minutes. A skeptic suggests that the variation in the frequencies observed,
¥1» ¥2» - - -s Y127, might be ascribed to chance causes alone. Describe any test
you might make to test the skeptic’s hypothesis,

You are assigned to a research program to assess the effectiveness of anti-
cancer drugs in animals and human beings. Write a report for the physician
in charge of the program (who has no statistical knowledge) describing how
methods using (a) the binomial distribution, (b) the Poisson distribution, and
(c) contingency tables might be of value is assessing the results of the pro-
gram. Illustrate your discussion with hypothetical experiments and data and
give appropriate analyses.

IMustrate how the binomial and Poisson distributions may be used to design
sampling inspection schemes.






CHAPTERA4

Comparing a Number of Entities,
Randomized Blocks, and Latin
Squares

4.1. COMPARING k& TREATMENTS IN A FULLY
RANDOMIZED DESIGN

Frequently you will want to compare more than two entities—treatments, pro-
cesses, operators, or machines. This chapter is about how to do it. The first
example is one in which there are k = 4 treatments randomly applied to n =
24 subjects.

Blood Coagulation Time Example

Table 4.1 gives coagulation times for samples of blood drawn from 24 animals
receiving four different diets A, B, C, and D. (To help the reader concentrate on
essentials, in this book we have adjusted the data so that the averages come out
to be whole numbers.) These data are plotted in Figure 4.1. The animals were
randomly allocated to the diets, and the blood samples were taken and tested in
the random order indicated by the bracketed superscripts in the Table.

Consider the question, “Is there evidence to indicate real difference between
the mean coagulation times for the four different diets?” The necessary calcula-
tions are frequently set out in an analysis of variance table, a valuable device due
to Fisher. The idea is to determine whether the discrepancies benveen the treat-
ment averages are greater than could be reasonably expected from the variation
that occurs within the treatment classifications. For example your computer will
Produce an analysis of variance (ANOVA) table that looks like that in Table 4.2.

Statistics for Experimenters, Second Edition. By G. E. P. Box, J. S. Hunter, and W. G. Hunter
Copyright © 2005 John Wiley & Sons, Inc.
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4
. LI )
56 61 ' 66 7

Figure 4.1. Dot plot of original data by diets.

Table 4.1. Coagulation Time for Blood Drawn from
24 Animals Randomly Allocated to Four Diets

Diets (Treatments)

A B C D

621’20) 63(12) 68" 16y 56(23)‘
60 67 667 62

63(_1!) 7](!5) 710 60(6)~
59t 1)) 64(!4) 67(”) 61(18)
63(5) 65(4) 68(!3‘) 63(22)
59(24; 66‘8’ 68(2!) 64(!9)

Treatment average 61 66 68 61
Grand average 64 64 64 64

Difference -3 +2 +4 -3

Table 4.2. The Analysis of Variance (ANOVA) Table: Blood Coagulation Example

Degrees of
Source of Variation Sum of Squares  Freedom  Mean Square
Between treatments Sr =228 vr= 3 myr = 76.0 Fr oo = 13.63
Within treatments Sp =112 vg =20 mp= 5.6 3.20 = B2

Total about the

grand average Sp =340 up =23

To better understand this analysis look at Table 4.3. On the left you will see
a table of the original observations Y and a table D of deviations from the
grand average of 64. Thus, in the first row of D are the entries —2 = 62 — 64,
—1 =63 — 64, and so on. This table of deviations is now further decomposed
into tables T and R. Table T represents the part due to the treatment deviations
(=3, +2, +4, —=3) from the grand average. Table R represents the residual part
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Table 4.3. Arithmetic Breakup of Deviations from the Grand Average y = 64

——

Deviations Residuals within-
from Grand Treatment Treatment
Observations Average of 64 Deviations Deviations
Yui Mi—Yy Y-y Yi— Y
62 63 68 56 -2 -1 4 -8 -3 2 4 -3 1 -3 0 -5
60 67 66 62 -4 3 2 =2 -3 2 4 -3 -1 =2 1
63 71 71 60 -1 7 7 -4 -3 2 4 -3 2 5 3 -1
59 64 67 6l -5 0 3 -3 -3 2 4 =3 -2 =2 -1 0
63 65 68 63 -1 1 4 -1 -3 2 4 -3 2 -1 0 2
59 66 68 64 5 2 4 0 -3 2 4 -3 -2 0 0 3
Y D=Y-64 = T + R
Sum of squares 340 = 228 + 112
degrees of freedom 23 = 3 + 20

that is left due to experimental error and model inadequacy. The individual items
in this table are called residuals.

Entries in the ANOVA Table: Sums of Squares

The sums of squares Sp, S7, and Sk in the analysis of variance (ANOVA) in
Table 4.2 are the sums of the 24 entries in each table D, T, and R. Thus

Sp= (=2 + (=11 + @’ + -+ (0)* = 340
Sr=(=3"+ @2+ @+ -+ (-3)* =228
Se=(12+ (=32 + (0P +---+ 32 =112

\.('o_u will find that Sp = Sy + Sg (for this example 340 = 228 + 112). The addi-
tivity property of these sums of squares is true for any similar table of numbers
split up in this way.

Entries in the ANOVA Table: Degrees of Freedom

The number of degrees of freedom is the number of elements in each of the
decomposition tables that can be arbitrarily assigned. For example, D has 23
degrees of freedom because if you fill this table with 23 arbitrarily chosen num-
bers the 24th will be determined since the déviations of any set of numbers from
their average must always sum to zero. On the same basis the elements of T
have three degrces of freedom. The elements of R are constrained in two differ-
ent ways—the elements in each column must add to zero and the sum of all of
the elements must also sum to zero, and thus the number of residual degrees of
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freedom is 24 — 1 — 3 = 20. Note that for any table of this kind, not only are the
sums of squares additive, but also are the degrees of freedom.

Entries in the ANOVA Table: Mean Squares

The mean squares mr and mg are obtained by dividing Sy and Sk by their
degrees of freedom vr and vg. On assumptions we discuss later, if there were no
differences due to treatments (diets), the mean squares my and mg would provide
independent estimates of the error variance o2 and their ratio would have an F
distribution with vy and vg degrees of freedom.

Computer calculations, or reference to the tables at the back of this book, show
that the probability of a value of F330 > 13.6 is less than 0.001. You sce that
the result is highly supportive of the inference that the null hypothesis should be
rejected and hence that the diets really do produce different coagulation times.

Graphical ANOVA

Walter Shewhart (1939, p. 88) once said, “Original data should be presented in
a way that will preserve the evidence in the original data.” The ANOVA table
alone does not do this. But as you saw in Chapter 3 you can supplement more
formal analyses with graphical methods and, as Yogi Berra says, “You can see a
lot by just looking.”

A graphical ANOVA is shown in Figure 4.2, which compares a suitably scaled
dot diagram of the treatment deviations directly with a reference dot diagram
of the residuals themselves. Notice that this is a supplement to the standard
ANOVA table. It would be deceptive if used alone because it takes no account of
the individual degrees of freedom that determine the significance probabilities.
But as commented by F. J. Anscombe (1973, p. 17), “A computer should make
both calculations and graphs. Both kinds of output should be studied; each will
contribute to understanding.”

The scale factor for treatments is such that if there were no difference between
the treatment means the narural variance of the dots in the dot diagram for treat-
ments would be directly comparable to that for residuals. By natural variance is

D

[

A 5 ¢ Treatments

N ] : lQ l!_ < 0.01
* ® i! ; ; ; i 3 * Residuals
-5 0 5

Figure 4.2, Dot diagram residuals and scaled treatment deviations.
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meant the sum of squares of the deviations of the dot deviations divided by the
number of dots (not the degrees of freedom). This measure of spread is appro-
priate because it shows the spread of the dots that the eye actually sees. The
analysis asks the question, “Might the scaled treatment deviations just as well be
part of the noise?” In Appendix 4A it is shown that the appropriate scale fac-
tor is /Vr/Vr = /20/3 = 2.6. The scaled treatment deviations —7.8, 5.2, 10.4,
and —7.8 are obtained therefore by multiplying the treatment deviations -3, 42,
+4, —3 by 2.6. This graphic analysis thus obtained is shown in Figure 4.2. It
visually supports the finding that the differences between treatments are unlikely
to be due to chance. The ratio of the natural variances of the dot plots pro-
duces the usual F value. (See Appendix 4A.) It ensures that you appreciate the
nature of the differences and similarities produced by the treatments, something
the ANOVA table does not do. It also directs your attention to the individual
residuals® that produce mg and makes you aware of any large deviations that
might call for further study. For instance, Figure 4.2 immediately makes clear
that there is nothing suspicious about the distribution of the residuals. Also that
treatments A and D are alike in their effects but C is markedly different and
B produces an intermediate effect. Experimenters sometimes believe that a high
level of significance necessarily implies that the treatment effects are accurately
determined and separated. The graphical analysis discourages overreaction to
high significance levels and avoids underreaction to “very nearly” significant
differences. . ‘

In the first edition of this book the treatment deviations were referred to a
reference ¢ distribution. On NIID assumptions the ¢ distribution may be regarded
as a reference distribution that could be fitted to the residuals. Rather than take
this additional theoretical step it seems preferable to use the residuals themselves
as the reference distribution in the graphical analysis.

Geometry and the ANOVA Table

Look again at Table 4.3 and now think of the 24 numbers in each of the tables
D, T, and R as constituting the elements of vectors D, T, and R. From geometry
(whatever the number of dimensions), if the sum of products of the 24 elements in
each of two vectors (sometimes called the inner product) is zero, the vectors are
at right angles, that is, orthogonal. You can confirm, for example, that the vectors
T and R, whose elements are set out in Table 4.3, are orthogonal by noticing
that the inner product of their twenty four elements, (—3)(1) 4+ (2)(=3) + (4)(0)
+ -+ + (=3)(3), equals zero. Indeed, for any series of numbers set out in a table
of this kind, because of the constraints placed upon their elements, the vectors
T and R will always be orthogonal. Also, since the vector D is the hypotenuse
of a right triangle with sides T and R with Sy and Sg, the squared lengths of
the vectors, the additive property of the sums of squares Sp = Sy + Sk follows
by extension of Pythagoras’ theorem to n dimensions. Also, geometrically the

* If desired, a normal plot of the residuals may be appended.
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degrees of freedom are the number of dimensions in which the vectors are free to
move given the constraints. These results are shown geometrically in Figure 4.3
for just three observations.

Exercise 4.1. Each of 21 student athletes, grouped into three teams A, B, and.
C, attempts to successfully toss a basketball through a hoop within a fixed time
period. The number of successes is given in the following table. Are there real
differences between the three teams? Construct an ANOVA for these data and
comment.

A B C

21(14) ]3(9) 15(17)
]9(6) 16(7) 16(8)
170 15t 400
21(13) 12(2) 15(5}
22(21) 19(16) 16(12)
23(18). 19(1,9) 12(]5)
1 7(2) 1 8(29) 17(10)

Assumptions

For the production of the ANOVA table, no assumptions are needed. You could
have written any 24 numbers for the “observations” in Table 4.1 and completed
an “analysis of variance” table like Table 4.2 and all the properties discussed so
far would apply. However, the relevance of such an ANOVA table for solving the
problem of comparing treatment means would depend on certain assumptions,

Figure 4.3. Right triangle of D, T, and R.
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An Additive Model?

The analysis of the data in Table 4.1 implies tentative acceptance of the under-
lying additive model
Y =N+ T+ &

where y;; is the ith observation in the rth column of the table, # is the overall
mean, T, is the deviation produced by treatment ¢, and &; is the associated error.,

Errors Independently and Identically Distributed?

On the IID assumption that each error &,; varies independently of the others and
has an identical distribution (and in particular the same variance), the expected
(mean) values of my and mg would be

E(nr) = Zr,z-l-crz, E(mg) = a’

Thus, if there were no differences in the four treatments sothat 1) = > =13 =
74 = 0 and Zrz =(, then both my and mg, the mean squares in the ANOVA
table, would be estimates of o2.

Normally Distributed?

If it could be further assumed that the &; were normally distributed (that they
were NIID), then my and mg would be distributed independently, and on the
null hypothesis that 3" > = 0 the ratio F = my/my would be the ratio of two
independent estimates of o2 and so would be distributed in an Fj 2y distribution
with 3 and 20 degrees of freedom. For the blood coagulation example Figure 4.4

5% point 1% point 0.1% point

N S

—_—
0 2 4 6 8 10 12 114

F — Observed ratio = 13.6

Figure 4.4. Observed vulue of the ratio my/mg = 13.6 in relation to an F distribution with 3 and
20 degrees of freedom: blood coagulation example,
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shows the appropriate F3 2 distribution in relation to the observed value of 13.6.
When the treatment effects are not all equal, the mean value of F is equal to
(3 t? + o?)lo®. The numerator in the F ratio is a measure of signal plus noise
and the denominator a measure of noise alone. Thus, like many other classical
statistical criteria (such as the ¢ statistic), the F statistic measures the signal-to-
noise ratio familiar to engineers, and the significance test tells you if the apparent
signal could or could not easily be explained by the noise.

The above additive model would not always provide a good approximation
for the original data, but as you will see in Chapter 7, a transformation of the
data can sometimes remedy this and also produce a more efficient analysis,

Graphical Checks

The assumptions (additivity, 11D errors, normality, constant variance) sound
formidable, but they are not so limiting as might be thought. The ANOVA is
quite robust (insensitive) to moderate nonnormality and to moderate inequality
of group variances. Unfortunately, as you saw in Chapter 2, much more serious
is the assumption of independence between errors for an unrandomized design.
You must expect that data collected in sequence will not be independent but be
serially correlated. It is well known that serial correlation can lead to very serious
errors if it is ignored (Box and Newbold, 1971). A further concern mentioned
earlier is the possibility that there are “bad values™ or “outliers” among the data
due to copying errors or mismanagement of particular experimental runs. The fact
that the ¢ and F distributions may not be greatly affected by outliers is, in this
context, almost a disadvantage since frequently*® the associated nonparametric
randomization tests can produce reference distributions very closely approximat-
ing their parametric counterparts even when, as in Darwin’s data in Chapter 3,
there are pronounced outliers. Graphical inspection of the data is therefore of
considerable importance.

Exercise 4.2. Perform a graphical ANOVA on the data of Exercise 4.1.

Outliers?

By plotting residuals, as was done at the bottom of Figure 4.2, it may be possible
to detect the presence of serious outliers. If their cause can be determined, they
may provide important and unanticipated information.

Serial Correlation

Randomization can nullify the potentially serious effect of autocorrelation,

Are the Variances the Same for Different Treatments?

Figure 4.5a shows plots of the residuals for all four diels separately. A plot of
this kind is useful not only as a check on the assumption of variance homogeneity

* Sce the analysis of Darwin's data in Table 3.6.
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but to enable you to see whether some diets might be associated with greater
variability than others. For this example there seems to be little evidence for such

differences.

Does the Spread of Residuals Increase as the Mean Increases?

In Figure 4.5b the residuals y,; — ¥, are plotted against treatment averages ¥,. A
tendency for the spread of errors to increase as the averages increase points to a

[
T

—0 —00®
[ ]

(a)

Figure 4.5. Dot diagrams: (¢) residuals for cach diet; (b) residuals versus estimated values:

(c) residuals in time sequence.
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possible need for data transformation. No such tendency appears here, but later
you will see an example where this phenomenon does occur and data transfor-
mation has a profound influence on the conclusions.

Are Sizes of the Residuals Related to Their Time Order?

A plot of the residuals in time sequence like that in Figure 4.5¢ can detect a sys-
tematic drift occurring during the experiments. Because of randomization, such a
drift will not invalidate your experiment. However, it might suggest your exper-
imental procedure is sensitive to previously unsuspected environmental changes,
for example, in the analytical laboratory. Correcting such a deficiency could
produce a smaller variance in future experiments.

Exercise 4.3. The players in Exercise 4.1 were randomly assigned to the 21
time trials. The randomization sequence is given as a superscript attending each
number of successes. (Thus, the first player to try out was the third member of
team A who scored 17.) Comment.

A Conclusion Instead of an Argument—Pitfalls in Comparative
Experiments

To better understand the rationale for randomization and other matters, it will
help to dramutize things a bit. Suppose that the data in Table 4.1 and Figure 4.2
had come, not from a randomized animal experiment, but from an industrial trial
on a pilot plant where the treatments A, B, C, and D were dilferent process
operating conditions with A the standard process. Suppose also that the data
were measures of some criterion of efficiency that it is desired 10 increase. Further
suppose that the arrangement of the experiment has been inadequately considered
and in particular there had been no attempt to randomize. '

The scene opens with seven people sitting around a table at a meeting to
discuss the results. They are the plant manager, the process superintendent respon-
sible for making the runs on the pilot plant, a design engineer who proposed
modifications B and C, a chemical engineer who suggested modification D, a
plant operator who took the samples of product for analysis, an analytical chemist
who was responsible for the tests made on the samples, and a part-time data ana-
lyst who made the statistical calculations. After some preliminaries the dialogue
might go something like this:

Plant manager (who would be happy if no changes were shown to be neces-
sary)—I am not convinced that the modifications B and C are any better
than the present plant process A. I accept that the ditferences are highly
statistically significant and that, almost certainly, genuine differcnces did
occur—but [ believe the differences were not due to the process changes
that we instituted. Have you considercd when the runs were made? 1 find
that all the runs with process A were made on a weekend and that the
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people responsible for operating the pilot plant at that time were new to
the job. During the week, when modifications B, C, and D were made, [
see that different operators were involved in making the runs.

Design engineer—There may have been some effects of that kind but I am
almost certain they could not have produced differences as large as we
see here.

Pilot plant superintendent— Also you should know that I went to some con-
siderable trouble to supervise every one of these treatment runs. Although
there were different operators, I'm fairly sure that correct operating proce-
dures were used for all the runs. I am, however, somewhat doubtful as to
the reliability of the method of the chémical testing which I understand has
recently been changed. Furthermore / believe that not all the testing was
done by the same person.

Analytical chemist—It is true that we recently switched to a new method
of testing, but only after very careful calibration trials. Yes, the treatment
samples came in at different times and consequently different people were.
responsible for the testing, but they are all excellent technicians and I am
fully confident there could be no problem there. However, I rhink there
is a question about the validity of the samples. As we know, getting a
representative sample of this product is not easy.

Plant operator (sampler)—It used to be difficult to get a representative sample
of the product, but you will remember that because of such difficulties a new
set of stringent rules for taking samples was adopted some time ago. / rthink
we can accept that during these trials these rules were exactly followed by
the various operators who took the samples.

Chemical engineer (proposer of method D)—Before we go any further, are we
sure that the statistical analysis is right? Does anyone here really understand

. the Analysis of Variance? Shouldn’t the experiment have been randomized
in some way?

Data analyst—1 attended a special two-day short course on statistics and can

* assure the group that the correct software program was used for analyzing
the data.

There were clearly many things to argue about and many uncertainties.* The
plant manager commented “l believe,” the design engineer was “almost certain,”
the plant superintendent was “somewhat doubtful,” the analytical chemist “fully
confident,” and so on. Have you ever been so unlucky as to have to sit through
a postmortem discussion like the above? The questions raised were about:

What was done?—operating procedures, sampling testing.
When was it done?—samples taken, samples tested.
Who and how many did it?—operators, samplers, testers, data analysts.

" There would be other questions that could have been raised but that no one had thought of at the
time. Some of these might return to haunt the participants long after the investigation was over.
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The points raised at the meeting all concerned matters that could cast doubt on
any conclusions drawn. The way these questions were to be answered should
have been settled before the experiment was performed. R. A. Fisher once said
you cannot make an analysis of a poorly designed experiment—you can only
carry out a postmortem to find out what it died of.

Preparation

The preparation for an investigation calls for much more than the choice of a sta-
tistical design. You must first consider the problems raised by such questions as;

Is the system of measurement and testing of sufficient accuracy and in proper
control?

Is the system for sampling adequate?

Is it reasonably likely that all the factor combinations required by the proposed
design can actually be run?

Do the operators and those responsible for sampling and testing really feel part
of the team? Have they been involved in planning how the experimental
runs can actually be made? Do we have their input?

Now that the plan has been finally agreed on, does everyone understand what
they are supposed to do?

Have you tried to arrange, where possible, that the effects of known sources
of inevitable variability are reduced by “blocking”? (See the boys’ shoes
example in the previous chapter and later examples.)

After you have done your best to deal with such problems, how can you
protect the experiment from the many “lurking variables™ of which you are
currently unaware?

Fisher once said that designing an experiment was like playing a game of
chance with the devil (aka Murphy). You cannot predict what ingenious schemes
for invalidating your efforts he might produce. Think of a game of roulette in
which you are the croupier. Gamblers can invent all sorts of systems that they
imagine can beat the bank, but if the bank adopted any systematic strategy, as
soon as this was suspected, the gambler could adopt a betting method to beat
the bank.

Only a random strategy can defeat every betting system. Similarly, if experi-
mental runs have been properly randomized, the known hazards and biases (and
those not mentioned or even thought of) can be forced to occur randomly and so
will not prejudice the conclusions.

Practical Considerations

In experimentation randomization of the environment in which each run is made
is the objective. The features of the treatments themselves are not randomized
away. For example, it may be that treatment B gives a much more variable result
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than some other process modification. However, this would be a characteristic of
the treatment and not its environment so that this information would be preserved
in a randomized experiment. In particular, graphical checks are not obscured by
randomization.

Concerns were expressed at the meeting about such issues as the way in which
sampling and testing of the product were carried out. These were important con-
siderations. The fact that biases due to such factors can be made to act randomly
does not mean that such issues can be ignored. Unless you can get these proce-
dures under proper control, you will unnecessarily increase variation and make
it more difficult to find the real treatment differences. You could produce a valid
but very insensitive experiment. The study and improvement of sampling and
testing methods are discussed in a special section of Chapter 9.

In animal experiments such as that set out in Table 4.1 it is easy to allocate
animals randomly to different experimental conditions and run the experiments in
random order. But in an industrial environment full-scale randomization would in
most cases be difficult and in some impossible. Consequently a fully randomized
arrangement is seldom used in industry because this is almost never the most sen-
sitive arrangement or the easiest to carry out. Instead “randomized block™ designs
and “split-plot” designs, discussed later, would most often be used. Usually these
designs are much easier to carry out and can provide more accurate results.

Extrapolation of Conclusions and Scaleup

In this pilot plant experiment one matter that was not mentioned at the meeting
of the committee but in practice would almost certainly come up is the question
of scaleup. Someone would have said, “Even if we accept that processes B and
C are better on the pilot plant, it doesn't follow that they will be better on
the full-scale plant.” Scaleup necessarily calls on the subject matter expertise
of engineers, chemists, and other technologists. Robustness studies discussed in
Chapter 12 can help, but as Deming (1975) has pointed out, extrapolation of
results from one environment to another must ultimately rest on a “leap of faith”
based on subject matter knowledge. Good experiments can however make that
leap less hazardous. (It is easier to leap over a canyon 2 feet across than one that
is 20 feet across.) Usually the most relevant question is “Do we have enough
evidence from these pilot runs to make it worthwhile to try the modified process
on the full scale?” Frequently, small-scale experimentation can bring you fairly
close to the best operating conditions, Evolutionary process operation run on the
full scale during routine production can bring you even closer. That technique is
discussed in Chapter 15.

4.2. RANDOMIZED BLOCK DESIGNS

The experimental arrangement just discussed is sometimes called a randomized
one-way classification. By general randomization the effect of noise is homoge-
nized between treatment and error comparisons and thus validates the experiment.



146 4 COMPARING A NUMBER OF ENTITIES. RANDOMIZED BLOCKS, AND LATIN SQUARES

However, this one-way design is often not the most sensitive. When you know,
or suspect you know, specific sources of undesirable change, you may be able to
reduce or eliminate their effects by the use of what is called “blocking.” This is
a natural extension of the idea of the paired comparisons used in the boys’ shoes
example in the previous chapter. Randomized block designs use a more limited
but equally effective randomization than that needed for the fully randomized
design. It is also easier to do and can produce a more sensitive experiment.

Penicillin Yield Example

Table 4.4 shows data from a randomized block experiment in which a process of
the manufacture of penicillin was investigated. Yield was the response of primary
interest and the experimenters wanted to try four variants of the process, called
treatments A, B, C, and D. Unfortunately, the properties of an important raw
material (corn steep liquor) varied considerably, and it was believed that this
alone might cause considerable differences in yield. It was found, however, that
for experimental purposes a blend of the material could be obtained sufficient to
make four runs. This supplied the opportunity of running the k = 4 treatments
within each of n = 5 blends (blocks) of the liquor. In a fully randomized one-
way treatment classification blend differences could have been randomized away
but only at the expense of increasing the experimental noise and making the
experiment more difficult to carry out. By randomly assigning the order in which
the four treatments were run within each blend (block),* validity and simplicity
were maintained while blend differences were largely eliminated.

A number of quantities useful for subsequent analysis are recorded in Table 4.4.
These are the block (blend) averages, the treatment averages, the grand average,
and the deviations of the block and treatment averages from the grand average. The
superscripts in parentheses associated with the observations indicate the random
order in which the experiments were run within each block (blend). To clarify

Table 4.4. Resuits from Randomized Block Design on Penicillin Manufacture

Treatment

Block Block
Block A B C D Averages Deviations
Blend 1 gotr  88™ 97 94 92 +6
Blend 2 g4 77 gath 79th 83 -3
Blend 3 g1 g7 g7 85™ 85 -1
Blend 4 g7 92 g gy 88 +2
Blend 5 79% g1 gor 88 82 —4
Treatment averagés 84 85 89 86 Grand average:
Treatment deviations -2 -1 +3 0 86

* It is important to understand that in a randomized block experiment the treatments are randomized
within the blocks.
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Table 4.5. ANOVA Table: Penicillin Example

a—

Source of Sum of

Variation Squares Degrees of Freedom Mean Square F ratio

Between blocks  Sp = 264 vg=(n—-1)=4 mg =660 Fy,»=3.51
(blends). _

Between Sr =170 vi=(k-=-1)=3 mr=233 F;=124
treatments

Residuals Sp =226 vg=(n-1)k-=1)=12 mp=188

Deviations Sp =560 nk—1=19
from grand
average

1 o ] 1 {
0.0 1.0 T 2.0 3.0 40 5.0
Observed ratio = 1.24 Ratio s%/s%
(ay
| | { |
0.0 1.0 2.0 3.0 T 40 5.0

Observed ratio = 3.51  Ratio s%/s%
(b).
Figure 4.6. Plots of (g) F3 12 and (b) Fy (» distributionis ‘with observed F ratios.

1Ssues, we have again simplified the data. Using these data, your computer software
program should produce an ANOVA table that looks like Table 4.5.

If we suppose for the moment that the NIID assumptions are approximately
v.alid, then the ratio of treatment to residual mean squares F3 ;3 = 1.24 yields a
significance probability of only about 33%. There is thus no evidence for differ-
ences between treatments. However, for blocks, Fy ), = 3.51 yields a significance
probability of about 4%, suggesting that blend differences do occur. To see what
these F ratios mean, look at Figures 4.6a,b.
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To better understand this ANOVA table, consider the decomposition of the data
in Table 4.6, which shows the original data Y, the deviations D from the grand
average of 86, the deviations B of the block averages from 86, the deviations.
T of the treatment averages from 86, and finally the residuals R that remain
after subtracting the contribution B and T from D, that is, R=D~-B-T.
The vectors B, T, and R are mutually orthogonal, and again by an extension
of the Pythagorean theorem, their sums of squares are additive, that is, Sp =
Sg + Sr + Sk. Their degrees of freedom are also additive; vp = vg + vy + vg.
See Figures 4.7a,b.

Increase in Efficiency by Elimination of Block Differences

The ANOVA table shows the advantage of using the randomized block arrange-
ment. Of the total sum of squares not associated with treatments or with the

/

(n-1)k-1)

I
)
Figure 4.7. Vector decomposition for a randomized block design with D = B + T + R.
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mean, almost half is accounted for by block-to-block variation. 1f the experiment
had been arranged on a completely randomized basis with no blocks, the error
variance would have been much larger. A random arrangement would have been
equally valid, where validity implies that data can provide an estimate of the same
error that affected the treatment differences. However, with the randomized block
design these errors were considerably less. Notice that of the total of Sp = 560
a sum of squares S = 264 (which would otherwise have been ascribed to the
error sum of squares) has been removed by blocks. The randomized block design
greatly increased the sensitivity of this experiment and made it possible to detect
smaller treatment differences had they been present than would otherwise have
been possible. :

Graphical ANOVA: Randomized Block Experiment

A graphical analvsis of variance is shown in Figure 4.8 in which the scale
factor for the block deviations is +/Vg/vg = /1274 = /3 and that for the treat-
ment deviations is +/vg/vr = +/12/3 = 2. The conclusions from this graphical
ANOVA are much the same as those from the ANOVA table—that there is no
evidence of treatment differences and that blocking has removed a substantial
source of variation.

Once again, the graphical ANOVA brings to the attention of the experimenter
how big in relation to noise the differences really are. Simple statements of
significance levels can be very misleading. In particular, a highly significant
result can of course arise from treatment differences that in the given context are
too small to have any practical interest.

Exercise 4.4.

Treatments
A B C D

340 24 a5 7

2200 4t 24 24
23@ 19 14 16
27(2) 30 25“) 2203F
28 18 220 20
340 233 2200 174

Blends

O B W =

A second series of experiments on penicillin manufacturing employed a ran-
domized block design with four new penicillin treatments and six blends of com
steep liquor. Construct an ANOVA table by data decomposition and using a
computer program. Comment.
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5 2 3 4 1
—_ * o L e 2 Blocks ~  p=004
A B D C |
—_ e o ¢ e — Treatments p=035
$8.888.22 ¢
—_ o , — Residuals -

-10 0 10
Figure 4.8. Graphical ANOVA for the randomized block cxpcﬁment.

Implications of the Additive Model

The decomposition of the observations shown in Table 4.6, which leads to the
ANOVA table and its graphical counterpart, is a purely algebraic process moti-
vated by a model of the form

Yi=n+Bi+u+eu
Thus the underlying expected response model

mi=n+p+1

is called additive because, for example, if increment 73 provided an increase of
six units in the response and if the influence of block B4 increased the response
by four units, the increase of both together would be assumed to be 6 +4 = 10
units in the response. Although this simple additive model would sometimes
provide an adequate approximation, there are circumstances where it would not.

If the block and treatment effects were not additive, an interaction would be
said to occur between blocks and treatments. Consider, for instance, the compari-
son of four catalysts A, B, C, and D with five blends of raw material represented
by blocks. It could happen that a particular impurity occurring in blend 3 poi-
soned catalyst B and made it ineffective, even though the impurity did not affect
the other catalysts. This would lead to a low response for the observation yz1
where these two influences came together and would constitute an interaction
between blends and catalyst,

Another way in which interactions can occur is when an additive model does
apply, but not in the metric (scale, transformation) in which the data are origi-
nally measured. Suppose that in the original metric the response relationship was
multiplicative, so that

i = nBit

Then, if the response covered a wide range, nonadditivity (interaction) between
block effects B; and treatment effects v, would seriously invalidate any linear
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model you attempted to fit. However, by taking logs and denoting the terms in
the transformed model by primes, the model for the observations becomes

Yo =0+ B+ ey

and assuming the ¢;; were approximately 1ID, the response ¥’ = log y could be
analyzed using a linear model in which the interactions would disappear.

Interactions may thus be thought of as belonging to two categories: frans-
Sformable interactions, which may be eliminated by analyzing, some transfor-
mation such as the log, square root, or reciprocal of the original data, and
nontransformable interactions such as a blend-catalyst interaction discussed
above, which cannot be eliminated in this way.

Diagnostic Checks

All of the residuals and the residuals for each individual block and treatment are
shown in Figures 4.9a,b. They do not suggest any abnormalities (e.g., differences
in treatment variances or the occurrence of outliers or bad values).

Now consider Table 4.7, which displays the best estimates y,; for the val-
ues in the individual cells of the original randomized block sometimes called

Bokt L | & | & | | @ | | | |
Bockz _@ & 1 | 1 | | | & | | é
Boks L | | & & & | | & | 1 |
Bocks | & | & | | & | 1 | & |
Boks & | | | & & 1 | | | | e
Teamenty _ 1 | | & & | & | & | | |
Treatmentz & | & | | & | | & | & |
Teamenta @ | | @ & | | & | | 1
Teatment4 _ 1 & | | | & | & 1 | | ¢

(b)
Figure 4.9. (a) Dot plots of residuals. (#) Residuals identified by block and trcatment,
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the predicted values. These can be obtained by subtracting the residuals from
the original raw data; thus y,; = y,; — ri, where the ry; are the elements in R
in Table 4.4. Figure 4.10 shows the residuals r;; plotted against their predicted
values ;. .

It will be remembered that one discrepancy to look for in such a plot is a
funnel shape, suggesting an increase in the variance as the mean increases. This
implies the need for data transformation to stabilize the variance. For a two-way
analysis, such as that between blocks and treatment effects, a tendency of this plot
to show curvature would also have suggested that the data did not support the use
of the additive model (and that this might be corrected by data transformation).
When the funnel effect and the curvature effect occur together, this produces a
plot looking something like a hunting horn. Such a'plot would increase suspicion
that a data transformation was needed. No tendency of either kind is shown for
these data.

Exercise 4.5, Do a graphical ANOVA for the data of Exercise 4.4.

§ .

10 | @ @ L 1

& 80 85 90 g5 A
o o

6L

Figure 4.10. Residuals plotted against the predicted values: penicillin experiment.

Table 4.7. Table of Estimated Values §; Randomized
Block Example (Penicillin Treatments)

Treatment
A B C D
1190 91 95 92
2] 81 82 86 83
Block 3|83 84 88 85
4| 86 87 9] 88
5| 80 81 85 82
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Exercise 4.6. Do a complete analysis of the predicted values and the residuals
for the data given in Exercise 4.4.

Negative Findings

In this penicillin example the four treatments produced no detectable differences
in yield. It should not be assumed a finding of this kind tells us nothing. Such
a result gives rise to the question “If the treatments are not detectably different,
which one is least costly or easiest to run?” If you can find answers to the
questions “How much is an increase of one unit of yield worth?” and "How
much (more/less) does each modification cost to run?” you can carry out an
analysis on cost rather than yield to answer directly the question “Are the cosrs
associated with the treatments A, B, C, D detectably different?”

The differences between the blocks (blends of corn steep liquor) could also be
informative. In particular, you might speculate about the tantalizingly high aver-
age performance of blend 1. Why should that blend be so different in its influence
on yield? Perhaps now the experimenters should study the characteristics of the
different blends of corn steep liquor.

“As If” with Randomized Blocks

You have perhaps heard it said that experiments should never be run on a process
or system that is not in a state of control where *“a state of control” would mean
that data from the process varied randomly about a fixed mean.* In his earliest
thinking about the design of experiments in the 1920s, Fisher had to discover

1200 +

1000 A

800 -

Yield

600

400." L} L] 14 ] A L4 L] ¥ T 1 ¥
O 10 20 30 40 S50 60 70 80 90 100 110 120

Figure 4.11. Yield of wheat from a sequence of identically treated plots.

* For this to be exactly true would abrogate the second law of thermodynamics and, as the distin-
guished scicntist Sir Arthur Eddington (1935) said, “If your theory is found to be against the second
law of thermo-dynamics I can offer you no hope.” From an applied point of view, a study by Ryan
(1989) found, in a survey of operating quality control systems, that nonc were in a state of control.
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(b)

(0
'—_;—:__.':. .' '. [ ]
i e "___‘ b o . .
()
A B € D
(e)

Figure 4.12. Randomized block analysis with nonstationary noise.

how to run experiments on processes and systems that were never in a state of
statistical control. For example, look at Figure 4.11, which is a graph of yields
of wheat identically treated (from a more extensive series of data due to Wiebe,
1935). You will agree that these data do not look much like the output from a
process in a state of control. Fisher’s solution to the quandary of how to run
such experiments was the invention of randomized blocks." He showed that it
was possible to obtain results that to an adequate approximation could be ana-
lyzed “as if” the usual assumptions about IID errors were in fact true. To see
how this works, look at Figure 4.12. For illustration suppose you want to com-
pare experimentally four treatments (methods, processes, etc.) A, B, C, D in five
replicates. Suppose also that unknown to you the effects, measured as deviations
from their mean, are those shown in Figure 4.12a. Together they are designated
as the signal. Unfortunately, the system from which this signal is to be retrieved
is not in a state of control. That is, the noise (the random variation) might look
like that in Figure 4.124. Ordinarily, the signal would be lost in this noise and

! He later introduced additional block designs such as Latin squares and incomplete blocks employing
the same randomized block principle.
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not recoverable. But suppose the four treatments are applied randomly in five
blocks, as shown in Figure 4.12¢. Adding the noise to this randomized signal
you get Figure 4.12d, in which the filled dots are the data you would actually
see. In the analysis of such data the variation in the five block averages, indicated
by the horizontal lines in Figure 4.12d, would be eliminated. The best estimate
of the A effect would then be obtained by averaging the deviations identified
with A, thus averaging the third deviation in block 1, with the first in block 2,
the third in block 3, and so on. Repeating these calculations for treatments B, C,,
and D gives the deviations shown in Figure 4.12¢, an excellent estimate of the
signal. You will see that the process of analysis represented graphically here is
precisely equivalent to that employed in the usual ANOVA.

Taking out block differences—a method for removing low frequency noise: One
interesting way to think about the problem is to look at it as a communications
engineer might. The engineer would most likely have considered the spectrum
of the noise. In such a spectrum the time series is regarded as made up of an
aggregate of sine and cosine waves of different amplitudes and frequencies. The
variance in each small range of frequencies is called the “power.” For the out-of-
control series of Figure 4.12h most of the power would be at low frequencies. A
familiar device applied in this area of expertise is what is called a “bandpass fil-
ter.” A suitable filter can modify the spectrum by suppressing certain frequencies.
In particular, a high-pass filter would allow the passage of high frequencies but
reject or attenuate low frequencies. Fisher's blocking procedure is an example
of ‘a high-pass filter in which the elimination of the between-blocks component
in the ANOVA corresponds to the removal of low-frequency power. The higher
frequency randomized signal measuring the differences between the treatments
A, B, C, and D can now be separated from the low-frequency noise.

4.3. A PRELIMINARY NOTE ON SPLIT-PLOT EXPERIMENTS AND
THEIR RELATIONSHIP TO RANDOMIZED BLOCKS

Later (Chapter 9), after the discussion of factorial designs, a class of designs
called split-plot designs will be introduced which are of great practical interest
in industry. We here briefly look at their relation to randomized blocks.

The randomized block experiment supplies a way of eliminating a known
source of variation—differences between blends of corn steep liquor were elim-
inated in the penicillin example as were differences between boys in the com-
parison of different types of materials for boys' shoes. The variation between
blocks (blends or boys) will be different from and almost certainly larger than
the variation within a block.

Now it is easy to imagine situations where additional process factors were
deliberately. introduced berween the blocks themselves. For example, if you
wanted to compare two types A and B of corn steep liquor, then some of the
blends could be of type A and some of type B. Similarly, with boys’ shoes you
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might want to compare the wear for five boys who walked to school with five
boys who rode the bus. The blocks (blends, boys) could thus be split to accom-
modate additional treatments. In such a split-plot experiment you would need to
estimate two different error variances, abz say, applied to comparisons between
blocks, and o2 (usually considerably smaller) for comparisons within blocks. In
this book we will stay with the nomenclature used in agricultural experimenta-
tion where these designs were first introduced in which the blocks were called
whole plots and the entities within blocks were called subplots. In agricultural
field trials you could, for example, compare different depths of plowing on the
whole plots (i.e., between blocks) and different varieties of corn on the subplots
(i.e., within blocks). The thing to remember is that split-plot designs are like the
randomized block design but with factors introduced between the blocks.

4.4. MORE THAN ONE BLOCKING COMPONENT: LATIN SQUARES

Sometimes there is more than one source of disturbance that can be eliminated
by blocking. The following experiment was to test the feasibility of reducing air
pollution by modifying a gasoline mixture with very small amounts of certain
chemicals A, B, C, and D. These four treatments were tested with four differ-
ent drivers and four different cars, There were thus two. block factors—cars and
drivers—and the Latin square design, shown in Table 4.8, was used to help elim-
inate from the treatment comparisons possible differences between the drivers,
labeled 1, 11, 111, and 1V, and between the cars, labeled 1, 2, 3, and 4.

You will see that each treatment A, B, C, or D appears once in every row
(driver) and once in every column (car). Adequate randomization can be achieved
by randomly allocating the treatments to the symbols A, B, C, and D; the drivers
to the symbols I, II, 111, and 1V; and the cars to the symbols I, 2, 3, and 4.

You may ask why not standardize the conditions and make the 16 experimen-
tal runs with a single car and a single driver for the four different treatments.

Table 4.8. The 4 x 4 Latin Square: Automobile Emissions Data

Cars Averages
l 2 3 4 Cars Drivers Additives
I A B D C 1: 19 I 23 A 18
19 24 23 26
Drivers n| D C A B 2: 20 11: 24 B: 22
23 24 19 30
Mmy| B D C A 3: 19 II: 15 C: 21
15 14 15 16
IV|]| C A B D 4. 22 IvV: 18 D: 19
19 18 19 16

Grand average: 20
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Such a design could also be statistically valid but the Latin square design has the
advantage that, it provides a wider inductive basis for the conclusions drawn—
any findings would not just apply to one car and one driver.

Table 4.9 shows the 16 elements of the vector V which are the deviations of
the observations from the grand average ¥ = 20. The vector V is then partitioned
into component vectors C, D, and T, which are respectively the deviations from
the grand average of the averages for cars, drivers, and treatments and the vector
of residuals R=V — C —D —T. The additive ANOVA shown in Table 4.10
once again reflects the fact that the squared length of the vector V is equal to
the sum of the squared lengths of the component vectors C, D, T, and R. By
reasoning similar to that used for randomized blocks, the associated degrees of
freedom are also additive. On NIID assumptions ‘and the null hypothesis that
there are no differences between treatments, the ratio of the mean squares for
treatments, and residuals is distributed in an F3 ¢ distribution. Inspection of the
ANOVA table shows there is no convincing evidence for differences between the
treatments but that the Latin square design has been effective in eliminating a
large component of variation due to drivers,

The graphical analysis of variance shown in Figure 4.13 further illustrates
these findings. Notice that it is assumed in all the above that the effects of

Table 4.10. Analysis of Variance: Latin Square Example

- Degrees Ratio of Significance
Source of Sum of of Mean Mean Probability
Variation Squares Freedom  Square Squares P
Cars (columns) S¢ =24 3 me =800 Fig=mc/mg=1.5 0.31
Drivers (rows) Sp =216 3 mp="7200 F36 =mp/mg =13.5 <0.01
Treatments Sr =40 3 mr =1333 Fag=mr/mg=2.5 0.16
(additives)
Residuals Sg=32 6 mp=15.33
Total Sy =312 15
1o 2 4
3 o ° Cars ~ p=03t
T l 1 T « 7 { i
i v ! I
— P 2@  Drivers — p<0.01
A & ¢ b Additives
i ¥ i L LS ] ¥ LI T
e o p=0.16
e o e o
® o [ [ ] J
1 T T 1 T l. 1. v. ? ? ? T T Residuals -
-6 -4 -2 0 2 4 6

Figure 4.13. Graphical ANOQVA for the Latin square example.
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treatments, cars, and drivers are all additive so that there are no appreciable inter-
action effects. The only purpose of cars and drivers—the blocking factors—is
to remove identifiable aspects of the noise.

For a small Latin square such as this it might be desirable to replicate the design
for the purpose of confirmation and to increase the degrees of freedom for the
residuals.

Exercise 4.7. Suppose the data in Table 4.8 are averages of two observations each
and that the 32 observations displayed below were obtained in random order. Have
your computer perform an appropriate ANOVA and make a graphical analysis.

Cars
1 2 3 4
6 A B D C

I 1206] 250 | 188 (| 26.3
2141 27.0 | 19.2 | 25.7

D C A B
Drivers Il | 20.6 | 25.5 | 229 | 25.8
214 | 265 | 23.1 | 26.2

B D C A
I [ 17.6 | 143 | 148 | 135
164 | 13.7 | 152 | 145

C A B D
IV {173 ] 138 | 18.2 | 223
16.7 | 14.2 | 198 | 21.7

The Misuse of Latin Square Designs

The Latin square design has frequently been used inappropriately to study pro-
cess factors that can interact. In such applications effects of one factor can be
inextricably mixed up with interactions of the others. Apparent outliers frequently
occur as a result of these interactions. Suppose, for example, that the observation
in the second column and third row in the above example was an outlier. This
cell is identified with driver 111, car 2, and treatment D. Such an interaction effect
could occur, for example, if driver III was unfamiliar with car 2. But notice that
this same effect could just as well be due to an interaction between driver 111 and
treatment D or between car 2 and additive D. Such ambiguities could sometimes
be resolved by adding a few additional runs, for example, by testing driver 11
with a different car using additive D. But when the interactions between factors
are a likely possibility, you will need to use the factorial or fractional designs
discussed later.

Exercise 4.8. Analyze the following duplicated 3 x 3 Latin Square design and
comment. Can interactions account for these data?
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Columns

1 2 3
A|B|C

I 166|721 68
62 | 67 | 66
Bl1C| A
Rows II | 78 | 80 | 66
81 ] 81169
C|B| A

HI 190 | 75| 60
94 | 78 |58

Gracco- and Hyper-Graeco-Latin Squares

Other interesting arrangements briefly introduced below that further exploit the
idea of blocking are the Graeco—Latin square, balanced incomplete block, and
Youden square designs.

A Graeco-Latin square is a k x k pattern that permits the study of k treat-
ments simultaneously with three different blocking variables each at k levels. For
example, the 4 x 4 Graeco—Latin square shown in Table 4.11 is an extension of
the Latin square design used earlier but with one extra blocking variable added.
This is labeled «, B, y, § and it could be used to eliminate possible differences
between, say, four days on which the trials were run. It is constructed from the
first two 4 x 4 Latin squares in Appendix 4B.

Exercise 4.9. Write a 3 x 3 and a 5 x5 Graeco-Latin square.
. Answer: See Appendix 4A.

This multiple blocking idea may be further extended using what are called
hyper-Graeco—Latin squares.

A Hyper-Graeco-Latin Square Used in a Martindale Wear Tester

The Martindale wear tester is a machine used for testing the wearing quality of
types of cloth or other such materials. Four pieces of cloth may be compared

Table 4.11, A 4 x 4 Graeco-Latin Square

Car
I 2 3 4

1 |Ax BB Cy Dé
Driver Il | BS§ Ay DB Ca| Additives: A, B, C, D

Mm|CB Da AS By | Days:a,pB,y.8

IV|Dy C5 Ba AB
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simultaneously in one machine cycle. The response is the weight loss in tenths
of a milligram suffered by the test piece when it is rubbed against a standard
grade of emery paper for 1000 revolutions of the machine. Specimens of the four
different types of cloth (treatments) A, B, C, D whose wearing qualities are to be
compared are mounted in four specimen holders 1, 2, 3, 4. Each holder can be
in any one of four positions Py, P, P3, Py on the machine. Each emery paper
sheet a, B, ¥, 8 was cut into four quarters and each quarter used to complete a
single cycle Cy, Ci, C3, C4 of 1000 revolutions. The object of the experiment
was twofold: (1) to make a more accurate comparison of the treatments and (2)
to discover how much of the total variability was contributed by the various
factors—holders, positions, emery papers, and cycles.

The replicated hyper-Graecco-Latin square design employed is shown in
Table 4.12. In the first square each of the treatments A, B, C, D occurs once
in every cycle Cy, Ci, Ci, C4 together with each of the four sheets of emery
paper @, B, v, & and each of the four holders 1, 2, 3, 4 to produce a total of 16
observations. Since there are four versions of each of the five factors—cycles,
treatments, holders, positions, and sheets of emery paper—in a single replication,
5 x 3 = 15 degrees of freedom are employed in their comparisons, leaving no
residual degrees of freedom to provide an estimate of experimental error. For this
reason the square was repeated® with four additional sheets of emery paper ¢, &,
@, « in four further runs. The ANOVA is given in Table 4.13 and the graphical
analysis in Figure 4.14.

The design was effective both in removing sources of extraneous variation
and in indicating their relative importance. Because of the elimination of these
disturbances, the residual variance was reduced by a factor of about 8, and you
could detect much smaller differences in treatments than would otherwise have
been possible. Also notice that the graphical analysis points to position P, as
giving much less wear than the others, a clue toward improvement that might
merit further study.

The ratio of mean squares is F = s2 /53 = 5.39 with three and nine degrees
of freedom. This is significant at about the 2% level. Thus, by using a design
which makes it possible to remove the effects of many larger disturbing factors,
differences between treatments were made detectable. Also the analysis identified
the large contributions to the total variation due to cycles and to emery papers. This
suggested improvements which later led to changes in the design of the machine.

4.5. BALANCED INCOMPLETE BLOCK DESIGNS

Suppose that the Martindale wear tester were of a different design which allowed
only three, instead of four, samples to be included on each 1000 revolution cycle
but that you had four treatments A, B, C, and D you wished to compare. You
would then have t = 4 treatments but a block size of only k = 3—too small to

* A better plan might have been to rearrange randomly the design (while retaining its special prop-
ertics) in the second square, but this was not done.
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Table 4.12. Hyper-Graeco-Latin Square Replicated Twice: First Wear Testing
Example

Positions
P P> P Py Replicate 1
Cy a¢Al BB2 yC3 sD4 Cycles: €. Cy, C3.Cy
320 297 299 313
Cycles Cz | BC4 | aD3 | A2 | yB] Treatments: A, B, C, D
266 227 260 240
Cy | yD2 | éCI aB4 | BA3 Holders: 1,2,3 4
221 240 267 252 .
Cy | 8B3 yA4 | BD! | aC2 | Emory paper sheets: a, 8, y.d
{ 301 238 243 290 |
Positions
Py Py P3 Py Replicate II
Cs Al £B2 6C3 kD4 Cycles: Cs, Co, C7. Cy

285 280 331 311

Cycles Cs | £C4 | D3 kA2 6Bl | ° Treatmems: A, B, C, D
268 233 291 | 280

C7 oD2 kCl eB4 £A3 Holders: 1,2,3 4
265 273 234 243 |
Cs | «B3 | 8A4 | ¢€D1 | «C2 | Emory paper sheets: ¢, £,0,

306 271 270 272

Averages

Treatments Holders Positions Emery Papers Cycles Replicates
A: 270.0 1: 268.9 Py: 279.0 a: 276.0 Cy: 307.3 - L. 276.1
B: 275.6 2:272.0 Py: 2574 ] B: 264.5 C,: 2483 Ii: 7275.8
C:2799 3:274.0 Py: 2744 y: 249.5 Cy: 2450
D: 260.4 4: 2710 Py 275.1 8: 278.5 Ca: 268.0

£: 256.0 Cs: 301.8 :
| £:265.3 Cs: 268.0

0: 286.8 Cy: 253.8
|_Grand average = 271.5 k:295.2 Cs: 279.8

accommodate all the treatments simultaneously. Table 4.14A shows a balanced
incomplete block design that you could use. The same design can alternatively be
set out as in Table 4.14B. In general, such designs have the property that every
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Table 4.13. ANOVA Table for Replicated 4 x 4 Hyper-Graeco-Latin Square:
Martindale Wear Testing Example

———

Degrees of Sum of . Ratio of
Source Freedom Squares Mean Squares Mean Squares
Y (y - 31 26,463.97
Replications 1 603.78 mp = 603.78 mp/mg =573
Cycles 6 14,770.44 me = 2,461.74 me/mp = 2335
Positions 3 2217.34 mp = 739,11 mp/mg =101
Emery papers 6 6,108.94 mg = 1,018.16 mg/mp =9.66
Holders 3 109.09 my = 36.36 my/mg = 0.34
Treatments 3 1,705.34 mr = 568.45 my/mp =539
Residuals 9 949,04 mg = 105.45
R . Cl- Cll
eplicates [ )
T | T T T i T T
cﬁ
. [ ]
Cycles S0 &2 & & o ¢ &
T T ! T T T T T
Emery papers ° . o e e [ .
T | T T T T T T
Positions f 2 P3.P4 f‘
T T T I T T T T
1 42 3
Holders o oo o
T T T T T T T !
Treatments .D f ? .C
T T T T T T T T
Residuals o 3o Strtcsetesss ode o
T T ! T T T T T
-30 -20 -10 0 10 20 30 40

Figure 4,14, Graphical ANOVA for the Martindale wear example.

Table 4.14. A Balanced Incomplete Block Design, ¢ = 4 Treatments in b = 4 Blocks
of Sizek =3

A B C D

A 1lA B C B 1{x x x
Block (cycle) 2(A B D or Block (cycle) 2| x «x X
of 1000 3l1A C D of 1000 3| x X X
revolutions 4B C€C D revolutions 4 X X X
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Table 4.15. Youden Square, ¢ = 7 Treatments, b =7 Blocks, Block Size k = 4

mm—

Treatments
A B C D E F G i
1 a 627 B 248 y 563 § 252
2 | @34 B 233 5442 | y 226
Blocks 3 @251 | y211 | 5160 B 297
(cycles) 4 | B337 | 8537 y 195 a 300
s y 520 | 8278 B 199 | « 595
6 | v 369 5196 | « 185 | B 606
7 8 396 B 602 y 240 | « 273

Treatments 1 =7 Blocks b =7 Block size k = 4

Within blocks, every pair of treatments appears twice.

pair of treatments occurs together in a block the same number of times. Thus,
in the above design you will see that A occurs with B twice, with C twice, and
with D twice and the same balance also occurs for B, C, and D. Comparisons
between pairs of treatments are made against variability occurring within blocks.
A very large number of these designs is available. See, for example, the classic
text Experimental Designs (Cochran and Cox, 1957).

Youden Squares: A Second Wear Testing Example

A less trivial example of a balanced incomplete block design is shown in Table 4.15.
The design is for comparing seven treatments in seven blocks of size 4 (ignore for
the moment the Greek letters). The data shown within each of the seven blocks
(cycles of 1000 revolutions) represent the weight loss in tenths of a milli gram on
the Martindale tester. It was necessary to test seven types of cloth A, B, C, D, E,
F, and G, but only four test pieces could be compared simultaneously in a single
machine cycle. Thus there is a fixed block size of k = 4.

In this particular balanced incomplete block design the number of blocks
happens to equal the number of treatments. Because ‘this is so, you have the
°Pp9rtunity to eliminate a second source of block variation. In the experiment set
Out in Table 4.15 the second source was used to eliminate possible ditferences in
machine positions, ¢, B, v, 8. Each treatment was run in each of the four positions,
and each of the four positions was represented in each cycle. A doubly balanced

incomplete block design of this kind is called a Youden square after its inveuntor,
W. J. Youden,

Principles for Conducting Valid and Efficient Experiments

0{106 more it is emphasized that in running complicated experimental designs of
this type you should take special care to:
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1. Make use of the specialist’s knowledge and experience. Statistical techniques
are an adjunct, not a replacement, for special subject matter expertise.

2. Involve the people responsible for operation, testing, and sampling.

3. Be sure that everyone knows what it is they are supposed to do and try to
make certain that the experiments are run precisely as required.

4. Use blocking to remove known but uncontrolled sources of variation.

5. Use appropriate randomization so that the effect of noise on the treatment
responses and on the residual errors is homogenized.

6. Provide suitable statistical analysis, both computational and graphical, which
will make clear what has and has not been established by the experiment
and thus help to decide how to proceed. :

APPENDIX 4A. THE RATIONALE FOR THE GRAPHICAL ANOVA

In a standard ANOVA table sums of squares of deviations having specific num-
bers of degrees of freedom are compared. Consider, for example, a one-way
classification of N observations made up of n data values for each of & treat-
ments so that nk = N. Let S4 be the sum of squares of the k deviations of
the treatment averages from their grand average. In the ANOVA table the sum
of squares for treatments Sy (between treatments) is n x Sx, where n = N/k
and has vy = k — 1 degrees of freedom. The within-treatments (residual) sum of
squares Sg is the sum of squares of the N deviations of the observations from
their treatment averages with vg = k(n — 1) degrees of freedom. A comparison
of the variation between treatments and that within treatments is made by compar-
ing the mean square my = Sy /vy with the mean square mg = Sg/vg. On NIID
assumptions, if there are no differences between treatments, E(mr) = E(mg)
and the ratio (S7/vr)/(Sk/Vvg) = my/mpg is distributed in a F,, ., distribution.

Similarly, for other classifications like the randomized block and Latin square
designs the mean square my of, say, k deviations of averages from the grand
average having vy degrees of freedom is compared with the mean square mg of
the residual deviations having vz degrees of freedom.

Now what is required to make an analysis of the dots in the dot plots is to
supply visual comparison of the k treatment deviations and the n residuals. This
is done by comparing the *“natural” variances of the dots: My = Sx/k = Sr/N
for treatments and Mg = Sg/N for residuals. In these expressions the divisors
are not the number of degrees of freedom but the number of squared deviations
and if the null hypothesis is true the natural variance of the treatment dots will
be the same as that for the residual dots. Thus the ratio

M,\' _ S.q/k _ i]; _ vrinr
fWR - SR/N o SR B Vginp

vr My _mr
vr /WR me

and hence
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Thus a dot plot made by scaling the treatment deviations by the factor /vg/vr
permits visual comparisons with a dot plot of the residuals. And the ratio of
(he natural variances of these scaled dot distributions reproduces visually the
standard F comparison in the ANOVA. It answers the question ‘Do the treatment
deviations when appropriately scaled, look like part of the noise?”

Unequal Groups

For a one-way classification with unequal numbers of observations ny, ny. ..., n;
in the k treatment groups the above argument leads to the conclusion that the
ith plotted treatment deviation from the grand average should have a scale fac-
tor /(Vrn;/vrn), where it is the average number of observations per treatment.
This correctly implies that fo assess possible differences in treatments it is the
weighted deviations that should be considered, where the weight applied to the
ith squared deviation is n; /. If, for example, a particular treatment deviation was
large but was based on only one observation, it should receive much less attention
than the same treatment deviation based on a large number of observations.

APPENDIX 4B. SOME USEFUL LATIN SQUARE, GRAECO-LATIN
SQUARE, AND HYPER-GRAECO-LATIN SQUARE DESIGNS

Before running a Latin square or similar design. be sure to randomize the design.
For example, randomly permaute first the rows and columns, and finally randomly
assign the treatments to the Jetters:

3x3:
A B C A B C
B C A C A B
C A B B C A

To form the 3 x 3 Graeco-Latin square, superimpose the two designs using
Greek letter equivalents for the second 3 x 3 Latin square; thus )

By Ca AB
CB Ay Ba

4 x 4:;
A B C D A B C D A B C D
B A D C D C B A C D A B
C D A B B A D C D C B A
D C B A C D A B B A D C

These three 4 x 4 Latin squares may be superimposed to form a hyper-
Graeco~Latin square. Superimposing any pair gives a Graeco-Latin square:

5x5:
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ABCDE ABCDE ABCDE ABCDE
BCDEA CDEAB DEABC EABCD
CDEAB EABCD BCDEA DEABGC
DEABC BCDEA EABCD CDEASGB
EABCD DEABC CDEAB BCDEA

These four 5x 5 Latin squares may be superimposed to form a hyper-
Graeco~Latin square. Also, superimposing any three gives a hyper-Graeco-Latin
square design. Similarly, superimposing any pair gives a Gracco~Latin square.

For number of factors £ > 5 and for a variety of balanced incomplete block
designs and the details of their analysis, see Cochran and Cox (1957). Many
design of experiments software programs provide large collections of Latin
square; Youden square and balanced incomplete block designs.
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QUESTIONS FOR CHAPTER 4

1. What is a randomized block design?
2. When is it appropriate to use a randomized block design?

3. Can you imagine a situation in which you might want to use a randomized
block design but would be unable to do so?

4. What is the usual model for a two-way ANOVA of a randomized block design?
What are its possible shortcomings? How can diagnostic checks be made to
detect possible inadequacies in the model?

5. With data from a randomized block design, describe the analysis for question
4 using graphical ANOVA?

6. Treating the boys’ shoe example as a randomized block design, what would
be the ANOVA? Show its essential equivalence to the paired ¢ test. I every
aspect of possible interest obtained from the ANOVA approach?

7. What precautions need to be considered when using a Latin square or
Graeco-Latin square design?

8. Yates once said that a randomized block design may be analyzed “as if”
standard assumptions were true, Explain.

PROBLEMS FOR CHAPTER 4

1. Paint used for marking lanes on highways must be very durable. In one trial
paint from four different suppliers, labeled GS, FD, L, and ZK, were tested
on six different highway sites, denoted 1, 2, 3, 4, 5, 6. After a considerable
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length of time, which included different levels of traffic and weather, the
average wear for the samples at the six sites was as follows:

Paint suppliers
GS FD L ZK

1169 59 55 70
218 65 65 75
Sites3 | 74 64 59 74
4161 52 59 62
5178 71 67 74
6|69 64 58 74

The objective was to compare the wear of the paints from the different suppliers.
(a) What kind of an experimental design is this?

(b) Make a graphical analysis and an ANOVA.

(c) Obtain confidence limits for the supplier averages.

(d) Make checks that might indicate departures from assumptions.

(e) Do you think these data contain bad values?

() What can you say about the relative resistance to wear of the four paints?
(g) Do you think this experimental arrangement was helpful?

2. Six burn treatments A, B, C, D, E, F were tested on six subjects (volunteers).
Each subject has six sites on which a burn could be applied for testing (each
arm with two below the elbow and one above). A standard burn was adminis-
tered at each site and the six treatments were arranged so that each treatment
occurred once with every subject once in every position. After treatment each
burn was covered by a clean gauze; treatment C was a control with clean
gauze but without other treatment. The data are the number of hours for a
clearly defined degree of partial healing to occur.

Subjects
1 2 3 4 5 6

A B C D E F
32 40 72 43 35 50
1 B A F E D C

29 37 59 53 32 S3
Positions on arm I C D A B F E
40 56 53 48 37 43

[

D F E A C B

v 29 59 67 56 38 42
v | E cC B F A D

28 50 100 46 29 56
vi| f E D C B A

37 42 67 50 33 48
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(a) What is this design called? What characteristics does it have?

(b) How can such a design be randomized? Why?
(c) Make an ANOVA and a graphical ANOVA.

(d) State any assumptions you make.

(e) Make an appropriate plot and analysis of the residuals.

171

3. Three alternative regimes «, B8, and y involving combinations of certain
exercises and drugs are being compared for their efficacy in the reduction
of overweight in men. Fifteen volunteers were available for the trial. The
trials were carried out by first dividing the subjects into “matched” groups;
that is, men in any group were chosen to be as alike as possible. The loss of

weight after 3 months for the three regimes was as follows:

Regimes
« B vy
1{15 10 8
2124 15 17|
Groups 3 (31 28 34
4137 36 34
5133 37 39

(a) Make any analysis you feel is appropriate, including a graphical analysis.
(b) Suppose you are told that the average weight in pounds at the beginning
of the trial for members in each group is as follows:

Group 1 2

3

4

5

Weight 250 309 327 356 379

How might this affect your analysis and conclusions?

4. Analyze the data shown below obtained at the start of a process. It was
known at the time that the process was very unstable, Nevertheless, it was
important to compare four variations A, B, C, D of process conditions. The
variants A, B, C. D were employed in 32 consecutive runs with results as

follows:
RUI}S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Variant C B D A B D A C D A B C A D C B
Result 56 60 69 61 62 70 65 65 66 63 52 57 58 60 61 66
Runs 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Vaiat A D B C D C A B B D C A C D A B
Rcs»ult 56 61 53 52 62 57 59 58 60 68 61 65 63 68 61 55
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(a) Plot the data. What kind of an experimental design is this?
(b) Make an ANOVA and a graphical ANOVA.

(c) Estimate the mean, with confidence interval, for the four possible process
conditions.

(d) Plot the residuals in time order.
(e) Plot the eight averages of the sets of fours runs in time order and comment,

It has been said that you should not run experiments unless the system is in
a state of statistical control. Do you believe the system described in problem
4 is in a state of control? Do you believe that you are able to make valid
comparisons between treatments even though the process is not in a state of
control? Give an estimate of the reduction in the length of the confidence
intervals that were achieved by the design in problem 4 compared with a
completely randomized arrangement.



CHAPTERS

Factorial Designs at Two Levels

5.1. INTRODUCTION

To perform a factorial design, you select a fixed number of “levels” (or “ver-
sions”) of each of a number of factors (variables) and then run experiments in all
possible combinations. This chapter discusses such designs when there are just
two levels for each factor. )

The factors can be quantitative or qualitative. Thus the two levels of a quantita-
tive variable could be two different temperatures or two different concentrations.
For qualitative factors. they might be two types of catalysts or the presence and
absence of some entity. ,

Two-level factorial designs are of special importance because:

1. They require relatively few runs per factor studied.

2. The interpretation of the observations produced by the designs can pro-
ceed largely by using common sense, elementary arithmetic, and com-
puter graphics. ;

3. When the factors are quantitative, although unable to fully explore a wide

region in the factor space, they often determine a promising direction for
further experimentation.

4. Designs can be suitably augmented when a more thorough local exploration
is needed—a process we call sequential assembly.

5. They form the basis for two-level fractional factorial designs discussed
in Chapter 6 in which only a carefully chosen part of the full factorial
design is performed. As you will see, such fractional designs are particularly
valuable for factor-screening purposes—that is, for deciding which of a
larger number of factors are the important ones. They are also valuable
building blocks in the sequential assembly of experimental designs.

Statisticy Sor Experimenters, Second Edition. By G. E. P. Box, J. S. Hunter, and W. G. Hunter
Copyright @ 2005 John Wiley & Sons, Inc.
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6. Factorial designs and the corresponding fractional designs fit naturally into
a sequential strategy, an essential feature of scientific method discussed
throughout the book.

5.2. EXAMPLE 1: THE EFFECTS OF THREE FACTORS (VARIABLES)
ON CLARITY OF FILM

As a first example consider an experiment to determine how the cloudiness of a
floor wax was affected when certain changes were introduced into the formula
for its preparation. The three factors studied were the amount of emulsifier A,
the amount of emulsifier B, and the catalyst concentration C. Each of the three
factors was studied at two levels so the arrangement is a 2 x 2 x 2, or 23, factorial
design.” The eight formulations are shown in the table on the left of Figure 5.1,
with the factor levels coded by plus and minus signs. For example a run using
the higher amount of emulsifier A, the lower amount of emulsifier B, and the
higher catalyst concentration would be coded as + — + (run6). The design is
must easily written down as follows. In the first column single minus and plus
signs are alternated. In the second, pairs of minus signs and plus signs, and so on.
This produces a two-level factorial design in what is called standard order.’ As
is also shown in the figure, these eight-factor combinations can be conveniently
represented geometrically by the vertices of a cube. If you imagine the center
of the cube to be the origin of a three-dimensional coordinate system, then the

Coded
design 7 8 >
Formulaton A B C i £ 8|
+T 3 4 e
1 - - - | 7
: e
2 + - - A
3 - + - g
4 + + - 5
5 - = o« /
6 + - + _1 1
7 - 4+ o+
L Jd
T 1
8 + o+ o+ - A +
cloudy
clear
(a) () (c)

Figure 5.1, A 23 factorial design: (a) coded in standard order; (b) used to study the effects of three
factors on the clarity of film; (¢) active and inert factors.

* The same two-level designs are sometimes called orthogonal arrays and the Jevels indicated by 0
and ] or by 1 and 2 instead of by minus and plus signs. For our purposcs the minus—plus notation
is more useful.

¥ This sequence is also called “Yates order™ in honor of Dr. Frank Yates.
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eight-factor combinations can be identified by eight points whose coordinates are
(-1,—-1,=-1,+1.-1,=-D, ..., (+1,41, +1) or, suppressing the 1's, by the
coordinates (~, —, =), (+, — =) ..., (+. +, +) shown in Figure 5.1a.

To assess the results from this experiment, a portion of each formulation was
spread thinly on a glass microscope slide and the clarity of the film observed.
You will see that a striking visual display of the data can be obtained by placing
the slides from the numbered formulations at the eight vertices of the cube, as
in Figure 5.1b. As was at once evident, it was the presence of emulsifier B that
produced cloudiness. This conclusion, though simply obtained, represented an
important finding and illustrated the value of geometric displays.

One way to describe the results of this experiment would be to say that, in the
three-dimensional (3D) design with factors A, B, and C, acrivity in the response
“cloudiness” occurred in only a one-dimensional (1D) factor space—that of emul-
sifier B. The factors emulsifier A and concentration C were without detectable
influence. Factors that behave in this way will be called inert.* The status of the
three factors may be conveniently displayed vsing the diagram shown on the right
of Figure 5.1, in which the one dimension of the active factor B is indicated as a
solid arrow and the two dimensions of the inert factors A and C are indicated by
dotted arrows.

4

5.3. EXAMPLE 2: THE EFFECTS OF THREE FACTORS ON THREE
PHYSICAL PROPERTIES OF A POLYMER SOLUTION

In the previous example only one response—clarity of film—was of interest, but
in the next there were three such responscs. Eight liquid polymer formulations
were prepared according to a 2* factorial design, The three factors studied were
1, the amount of a reactive monomer; 2, the type of chain length regulator;
and 3, the amount of chain length regulator, each tested at two levels. As before,
eight runs were conveniently coded by plus and minus signs. The three responses
observed were whether or not the resulting solution was milky (y;), whether it
was viscous (y;), and whether it had a yellow color (y3). The 2* factorial design
and observed responses are displayed in Table 5.1.

One striking result was the regular alternation between milky and clear solu-
tions. Thus, over the ranges explored the response y; was only dependent on
factor 1. Similar visual analysis showed the response y; was only dependent on
factor 3, but a change in the response y3 occurred only if both factors 1 and
2 were at their plus levels; that is, a high level of reactive monomer 1 and a
high level of chain length regulator 2 were needed. Thus, for this response there
Was an interaction between factors 1 and 2. Notice that if the factors had been
Studied in customary *‘one-factor-at-a-time” fashion this last effect would have
escaped detection. The dimensionality of the active factors is diagrammed in as
before at the bottom of Figure 5.2.

For this 3D experiment, then, with only eight runs, the identity and dimension
of the active subspaces for factors 1, 2, and 3 were 1D for milkiness, 1D for

I the effects of factors could be determined with great accuracy few would be without any effect.
In this book the word “inert” is applied to factors that are relatively inactive.
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Table 5.1. A 2? Factorial Design with Three Responses: Polymer Solution Example

Factor Levels - +
1 amount of reactive monomer (%) 10 30
2 type of chain length regulator A
3 amount of chain length regulator (%) 1 3
)’l v }’2‘ y}.
Formulation 1 2 3 Milky? Viscous? Yellow?
1 - -~ - Yes Yes No
2 + -~ - No Yes No
3 - + - Yes Yes No
4 + + - No Yes Slightly
5 - - + Yes No No
6 + - + No No No
7 - + + Yes No No
8 + + + No No Slightly
A A A
2] 21 2
P4 3 3.7
L : -
] ’r t ’f
| ”, { ,
[Ihe | e
= >  Heeeaee- -———> >
1 1 1
¥1, Milky? ¥, Viscous? ya, Yellow?

Figure 5.2. Dimensional activity of three factors affecting the three responses milkiness, viscosity.
and yellowness.

viscosity, and 2D for yellowness. Now a product was required that was not milky,
was of low viscosity, and had no yellowness. The experiment showed that it
should be possible to obtain this using the higher level of reactive monomer, a
chain length regulator of type A and the higher percentage of the chain length
regulator as in formulation 6. Later experimentation confirmed this discovery.

In order to solve problems and make discoveries in science and engineering,
it is very important for experimenters to determine which factors do what 10
which responses.

Which Factors Do What to Which Responses

Factorial experiments like the one above, and fractional designs to be discussed
later, provide an economical way of doing this. Notice too that, while such studies
can be of great empirical importance, dimensional information of this kind can
also suggest physical explanations for the effects, often providing valuable and
unexpected directions for further inquiry.
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As these two examples illustrate, it is not unusual for a well-designed exper-
iment to almost analyze itself. In both the foregoing studies the responses were
qualitative (e.g., cloudy-not cloudy), the effects of the factors could be simply
described and experimental error could be largely ignored. Such simplicity is not
always to be found. The next example concerns a pilot plant study where the
response was quantitative and the effects of the factors not so obvious.

5.4. A 23 FACTORIAL DESIGN: PILOT PLANT INVESTIGATION

This experiment employed a 23 factorial experimental design with two quan-
titative factors—temperature T and concentration C—and a single qualitative
factor—type of catalyst K. Each data value recorded is for the response yield
y averaged over two duplicate runs.” Table 5.2 shows these data with the coded

Table 5.2. A 2? Factorial Design: Pilot Plant Investigation

Temperature, Concentration, Catalyst,
T (°C) C @) K

- + - + = +

160 180 20 40 A B

Coded Units of Factors
Average Yield y

T C K from Duplicate Runs
_ - - 60
+ — - 72
- + - 54
+ + — 68
- - + 52
+ - + 83
- + + 45
+ + + 80
Run Temperature, Concentration, Catalyst, Yield,
Number- T (°C) C (%) K (A or B) y (%)
Operational Levels of Factors
1 160 20 A 60
2 180 20 A 72
3 160 40 A 54
4 180 40 A 68
5 160 20 B 52
6 180 20 B 83
7 160 40 B 45,
8 180 40 B 80

L4
The data were from a real example that has, however, been considerably simplified to allow us to
Concentrate on important issues and avoid distracting fractions and decimals.
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Figure 5.3. Display of the results from a pilot plant investigation employing a 2* factorial design to
study the effects of T (temperature), C (concentration), and K (catalyst) on yiceld: (a) the 2* factorial
with runs identified in standard order; (b) observed percent yields; (¢) 12 treatment comparisons.

factor levels and the resulting operational design. (It does not matter which of
the two catalysts is associated with the plus and which with the minus sign, so
long as the labeling is consistent).

Figure 5.3a shows the numbered runs for the various combinations of factors
T. C, and K at the corners. of a cube. Figure 5.3h shows the yields obtained.
Such a display is called a cube plot. Figure 5.3¢ shows how this eight-run design
produces 12 comparisons—along the 12 edges of the cube: four measures of the
effect of temperature change, four of the effect of concentration change, and four
of the effects of catalyst change. Notice that in this factorial experiment on each
edge of the cube only one factor is changed with the other two held constant.
(The experimenter who believes that only one factor at a time should be varied
is thus amply provided for.)

Most frequently, in factorial experiments factor activity is described in ternis
of a “main effect—interaction™ model. Although this model is extremely valuable,
you will see later that factor activity is not always best expressed this way.

5.5. CALCULATION OF MAIN EFFECTS

Averaging Individual Measures of Effects

Consider the results of the first two runs listed in Table 5.2, Aside from exper-
imental error the yields (72 and 60) differ only because of temperature; the
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concentration (20%) and the type of catalyst (A) were identical in this com-
parison. Thus the difference 72 — 60 = 12 supplies one measure of the tempera-
wre effect with the remaining factors held fixed, as is illustrated in Figure 5.3c.
vou will see that there are four such measures of the temperature eftect one for
each of the four combinations of concentration and catalyst as listed

below:

o

Constant Conditions of C and K
within Which Temperature Comparisons

Are Made
E;ncentration, Catalyst, Effect of Changing Temperature
C K from 160 to 180°C
20 A V—=n=12-60=12
40 A Y—y3=068-54=14
20 B Yo —¥s =83 —52 =231
40 B ya—yr= 80 —45 =35

Main (average) effect of
temperature, 7 = 23

The average of these four measures (+23 for this example) is called the main
effect of temperature and is denoted by T = 23,

The general symmetry of the design (see Fig. 5.3c) ensures that there is a
similar set of four measures for the effect of concentration C. In each of these
the levels of the factors T and K are kept constant:

Constant Conditions of T and K within
Which Concentration Comparisons

— Are Made Effect of Changing
Temperature, Catalyst, Concentration from

T K 20 to 40%

160 A y3— ¥y =54 — 60 = —6
180 A Yy =y =68 —72 = —4
160 B Y7 —ys =45 —52 = ~7
180 B _Vg—y6=80—83=—'3

Main (average) effect of
‘concentration, C = =5
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Similarly, there are four measures of the effect of catalyst:

Constant Conditions of T and C within
Which Catalyst Comparisons Are Made

Temperature, Concentration, Effect of Changing from Catalyst
T C Ato B

160 20 ys—y =52-60= -8

180 40 Yo —Yy2=83—-72=11

160 20 }’7—}’3=45—54=°—-9

180 40 }’3—)’4'= 80— 68 =12

Main (average) effect of
catalyst, K = 1.5

Differences Between Two Averages

The main effects are the difference between two averages:
Main effect =y, —7_

Thus, in Figure 5.4a, ¥ is the average response on one face of the cube cor-
responding to the plus level of the factor and y_ is the average response on
the opposite face for its minus level. Thus the main effects of temperature T,
concentration C, and catalyst K can equally well be calculated as

_12+68+834+80 60+54+452445

T : - =75.75— 52,75 = 23
5 5 2
c=‘4+68:4 +80 _60+7 15“83:61.75—66.75:—5
=52+83-:45+80_60+721-54+68=65.0_63'5=1.5

Notice that all the eight observations are being used to estimate each of the
main effects and that each effect is determined with the precision of a fourfold
replicated difference. To obtain equal precision, a one-factor-at-a-time series of
experiments would have required eight runs for each factor.

Advantages of Factorial Experiments over the One-Factor-at-a-Time
Method

The one-factor-at-a-time method of experimentation, in which factors are varied
one at a time with the remaining factors held constant, was at one time regarded
as the correct way to conduct experiments. But this method only provides an
estimate of the effect of a single factor at selected and fixed conditions of the



56 INTERACTION EFFECTS 181

Figure 5.4. Geometric representation of contrasts corresponding to main effects and interactions:
(a) main effects; (b) two-factor interactions; (c) three-factor interaction. -

other factors. For such an estimate to have more general relevance it would
be necessary to assume that the effect was the same at all the other settings
of the remaining factors—that is, the factors would affect the response addi-
tively. But (1) if the factors do act additively, the factorial does the job with
much more precision, and (2) as is illustrated below, if the factors do not act
additively, the factorial, unlike the one-factor-at-a-time design, can detect and
estimate interactions that measure this nonadditivity.

5.6. INTERACTION EFFECTS

Two-Factor Interactions

We have seen that the main effect of temperature T = 23 is an average of four
Individual comparisons. But this is obviously an incomplete description of the
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influence of temperature on yield. We can see, for example, in Figure 5.3c that the
temperature effect is much greater on the back face of the cube than on the front
face. That is, it is greater with catalyst B than with catalyst A. Thus the factors
temperature and catalyst do not behave additively and are said to “interact” —to
have a coupled influence upon the response beyond their main effects. A measure
of this interaction is supplied by the difference between the temperature effects
at thé plus and minus Jevels of the catalyst factor. One-half of this difference
is called the temperature by catalyst interaction, denoted by TK. Thus TK =
(33 — 13)/2 = 10. The TK interaction may equally well be thought of as one-
half the difference in the average cutalyst effects at the two levels of temperarure
to give, once again, TK = [11.5 — (—8.5)]/2 = 10. Using Figure 5.4b 10 check
how the interaction estimate TK uses the eight observations, you will find that

M+Yst+Yetys Yo+ Yit+ys+)r

TK =
4 4

60454483480 72468452445
- 4 B 4

=69.25-59.25=10

Thus, like a main effect, an interaction effect is a difference between two
averages, half of the eight results being included in one average and half in
the other. Just as main effects may be viewed graphically as a contrast between
observations on parallel faces of the cube, the TK interaction is a contrast between
averages on two diagonal planes, as shown in Figure 5.4b. The TC and the CK
interactions may be viewed in a similar way.

Three-Factor Interaction

Consider the temperature-by-concentration interaction. Two measures of this TC
interaction are available from the experiment, one for each catalyst. When K is
at its plus level (catalyst B),

(vs — ¥7) — (¥6 — ¥3) _ (80 — 45) — (83 — 52)
2 - 2
35-31

— =

4

Interaction 7C =

2

When K is at its minus level (catalyst A),

(ys = ¥3) = (y2—y1) _ (68 —54) — (72 — 60)
2 B 2
14—12
— =

Interaction 7C =

1

The difference between these two mcasures the consistency of the remperature-
by-concentration interaction for the two catalysts. Half this difference is defined
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as the three-factor interaction of temperature, concentration, and catalyst, denoted
by TCK. Thus TCK = (2—1)/2=0.5.

As before, this interaction is symmeltric in all the factors. For example, it could
equally well have been defined as half the difference between the temperature-by-
catalyst interactions at each of the two concentrations. The estimate of this three-
factor interaction is again a difference between two averages, If the experimental
points contributing to the two averages are isolated, they define the vertices of
the two tetrahedra in Figure 5.4¢c, which together comprise the cube.

Again, each of the estimated factorial effects is seen 1o be a contrast between
two averages of the form y, — ¥_. It is helpful to remember that for any main
effect or interaction the average ¥ always contains the observation from the run
in which all the factors are at their plus levels, for example, for a 2* factorial,
the + + + run.

It would be extremely tedious if effects had to be calculated from first princi-
ples in this way. Fortunately, statistical software programs today quickly provide
estimates of the effects for any 2* factorial design and can also compute the
standard error of effects.

5.7. GENUINE REPLICATE RUNS

Although there are usually much better ways to employ 16 experimental runs,
each of the eight responses displayed in Table 5.2 was the average of the two gen-
uinely replicated runs shown in Table 5.3. By genuine run replicates we mean that
variation between runs made at the same experimental conditions is a reflection
of the total run-to-run variability. This. point requires careful consideration.

Table 5.3, Estimating the Variance: Pilot Plant Example

Average Estimated Variance
Response Value Results from at Each Set of
.(Previously Used Individual Difference of Conditions,
In Analysis) T C K Runs* Duplicate s} = (Difference)?/2
60 — = = | 59 6l ] 2 2
72 + = —|74® 0% | 4 8
54 - 4+ =] 5o 58010 ‘ 8 32
68 + + —|69% 6710 2 2
52 - =+ | 50® 5402 4 8
&3 + -+ |81 gsud 4 8
45 - 4+ 4| 467 a40n 2 2
80 + 4+ + [ 79N 81U 2 2

) | ] Total 64
5% = pooled estimate of o~ = average of estimated variances

= % = 8 with v = 8 degrees of freedom

? Superscripts give the order in which the runs were made.
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Randomization of run order for the all 16 runs, as indicated in Table 5.3,
ensures that the replication is genuine. But replication is not always easy. For
this pilot plant experiment a run involved (1) cleaning the reactor, (2) inserting
the appropriate catalyst charge, (3) running the apparatus at a given temperature
at a given feed concentration for 3 hours to allow the process to settle down at the
chosen experimental conditions, and (4) sampling the output every 15 minutes
during the final hours of running. A genuine run replicate involved taking all
these steps all over again. In particular, replication of only the chemical analysis
of a sample from a single run would provide only an estimate of analytical vari-
ance. This is usually only a small part of the experimental run-to-run variance.
Similarly, the replication of samples from the same run could provide only an
estimate of sampling plus analytical variance. To obtain an estimate of error that
can be used to estimate the standard error of a particular effect, each experimental
run must be genuinely replicated. The problem of wrongly assessing experimental
error variance can be troublesome and is discussed more fully in Chapter 12.

Economy in Experimentation

Usually there are better ways to employ 16 independent runs than by fully repli-
cating a 2 factorial design as was done here. You will see later how four or five
factors (and in some cases more than five) can be studied with a 16-run two-level
design, Also, assessing the significance of effects that do not require replicate
runs will later be discussed. For the moment, however, consider the analysis of
the replicated data.

Estimate of the Error Variance and Standard Errors of the Effects from
Replicated Runs

Look at the pairs of observations recorded at the eight different factor combina-
tions in Table 5.3. From any individual difference d between duplicated runs an
estimate of variance with one degree of freedom is s? = d*/2. The average of
these single-degree-of-freedom estimates yields a pooled estimate s2 = 8.0 with
eight degrees of freedom, as shown in Table 5.3. Because each estimated effect
T, C, K, TC, ... is a difference between two averages of eight observations, the
variance of an effect is given as

1 1 8.0
V (effect) = (g + g) 32 = T =2

Its square root is the standard error of an effect, SE(effect) = 1.4.

In general, if each factor combination was replicated, a pooled estimate of the
experimental run variance from g factor combinations would be

vls,2 + vzs§ + -+ trgs%

vituvateec

82
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where v = v; + vz +--- 4+ v, is the number of degrees of freedom of the esn-
_mate In the special case of g duplicate combinations this fommula reduces to s2
Zd /2g with g degrees of freedom. Thus in this example 52 = 128/2(8) = 8. O
with v = 8 degrees of freedom.

5.8. INTERPRETATION OF RESULTS

All estimated effects for the pilot plant data along with their standard errors are
shown in Table 5.4. It is important to have some method for determining which
effects are almost certainly real and which might readily be explained by chance
variation. A rough rule is that effects greater than 2 or 3 times their standard error
are not easily explained by chance alone. More precisely, on NIID assumptions,
each ratio, effect/SE(effect), will be distributed in a 7 distribution with v =8
degrees of freedom. A “significant™ value of ¢ at the 5% level is 2.3, that is,
Pr(jtz] > 2.3) = 0.05; thus the 95% confidence interval for an effect in Table 5.4
would be given by the estimated effect 2.3 x 1.4 (i.e., +3.2). We prefer to
provide the estimated effect and its standard error as is done for example in
Table 5.4 and leave the choice of the percentage level of any confidence interval
to the judgment of the reader. In Table 5.4 effects almost certainly not due to
noise are shown in bold type.

Interpretation of the Table of Estimated Effects

The main effect of a factor should be individually interpreted only if there is no
evidence that the factor interacts with other factors. When there is evidence of one
or more such interactions, the interacting variables must be considered jointly.
In Table 5.4 you see that there is a large temperature main effect, 23.0 & 1.4,
but no statement about the effect of temperature alone should be made because
temperature interacts with catalyst type (the TK interaction is 10.0 & 1.4). In the
case of concentration, however, the main effect is —5.0 £ 1.4, and there is no

Table 5.4. Calculated Effects and Standard Errors
for 23 Factorial: Pilot Plant Example

Average Effect with Standard Error
Main effects
Temperature, T 23.0+1.4
Concentration, C -50+t14
Catalyst, K 1.5+14
Two-factor interactions ,
TxC 15+1.4
T'xK 10.0+1.4
CxK ’ ' 0.0+14

Three-factor interaction
TxCxK 05+14
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Figure 5.5. Temperature—catalyst (7K) interaction displayed by (a) a two-way diagram and (b)
comparing the change in yield produced by temperature for each of the catalysts A and B.

evidence of any interactions involving concentration. Thus the following tentative
conclusions may be drawn:

1. The effect of changing the concentration (C) over the ranges studied is to
reduce the yield by about five units, and this is approximately so irrespective
of the tested levels of the other variables.

2. The effects of temperature (T) and catalyst (K) cannot be interpreted sepa-
rately because of the large TK interaction. With catalyst A the temperature
effect is 13 units, but with catalyst B it is 33 units. This interaction may
be understood by studying the two-way table in Figure 5.5a. Equivalently,
Figure 5.5b shows how the interaction arises from a difference in sensitivity
to temperature for the two catalysts.

A result of great practical interest in this experiment was the very different
behaviors of the two “catalyst types” in response to temperature. The effect was
unexpected, for although obtained from two different suppliers, the catalysts were
supposedly identical. Also, the yield from catalyst B at 180°C was the highest
that had been seen up to that time. This finding led to a careful study of catalysts
and catalyst suppliers in a later investigation.

5.9. THE TABLE OF CONTRASTS

To better understand the 23 design, look .at the table of signs in Table 5.5. The
table begins with a column of plus signs followed by three columns labeled T, C,
and K that define the design matrix of the 23 factorial design. This is followed by
four additional columns identified as TC, TK, CK, and TCK. The yield averages,
which are treated as single observations, are shown in the last column of the table.

The first column of plus signs is used to obtain the overall average; we add
the observations and divide by 8. The remaining seven columns define a set of
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Table 5.5. Table of Contrast Coefficients for 23 Factorial Design: Pilot Plant
Example

P

Yield
Mean T C K TC TK CK TCK  Average
+ - - - + + + - 60
-+ + - - - - + + 72
+ - + - = 4+ ~ + 54
+ + + -+ - —~ - 68
+ - - + + - - + 52
+ + - + - + - - 83
+ - + + -~ = + - 45
+ + + o+ 4+ o+ + + 80
Divisor - 8 4 4 4 4 4 4 4

seven contrasts indicating which observations go into ¥, and which into ¥_ for
each effect. Thus, for example, the T main effect can be calculated from the
column of signs (— + — 4+ —+ —+)to give T = (—60+ 72 — 54 + 68 — 52 +
83 — 45 4 80)/4 = 23.0 as before. The divisor, 4, transforms the contrast into
the difference between the two averages (¥, — ¥_). The C and K main effects
can be calculated in the same way from the next two columns.

It is a remarkable fact that the columns of signs for the interaction contrasts
can be obtained directly by multiplying the signs of their respective factors. Thus,
the column of signs for the TK interaction is obtained by multiplying together,
row by row, the signs for T with those for K. The estimate of the TK interaction
effect is therefore TK = (+60 — 72 + 54 — 68 — 52 + 83 — 45 + 80)/4 = 10.0.
In a similar way, the array of signs for the TCK interaction effect requires
multiplying together the signs in the columns for T, C, and K. Thus the estimate
of the three-factor interaction 7CK = (=60 + 72+ 54 — 68 +52 ~ 83 — 45 +
80)/4 = 0.5. The table of signs for all main-effects and interaction effects may
be obtained similarly for any 2* factorial design. (See Table 5.10b later for the
table of contrasts for a 2* factorial.) Each contrast column is perfectly balanced.
_With respect to all the others. To see this, choose any one of the contrast columns
in Table 5.5 and look at the group of plus signs in that column. Opposite the
four plus signs there are two plus signs and two minus signs in every one of the
other six contrast columns; the same is true for the corresponding group of four
minus signs. This remarkable property of perfect balance is called orthogonality.
Orthogonality” ensures that each estimated éffect is unaffected by the magnitudes
and signs of the others.

Exercise 5.1. Add any constant to the observations associated with the + levels
In any contrast column of Table 5.5 and verify that only that single contrast

L] . . N . .
If the eight entries in any column of the table are regarded as defining the signs of the elements
%1 of a vector, it will be scen that the inner product of any pair of such vectors is zero.
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effect will be changed. Similarly, conform that if a constant is added to all the
observations only the average will be influenced.

5.10. MISUSE OF THE ANOVA FOR 2*¥ FACTORIAL EXPERIMENTS

Many computer programs employ the ANOVA for the analysis of the 2* designs
(and for their fractions, discussed in Chapter 6). However, for the analysis of
these particular designs the use of the ANOVA is confusing and makes little
sense. Consider the analysis of a two-level design with k factors in n replications
and hence N = n x 2* observations. In the ANOVA approach the 2% — ] degrees
of freedom for treatments are partitioned into individual “sums of squares” for
effects, equal to N(effect)?/4, each of which is divided by its single degree of
freedom to provide a mean square. Thus, instead of seeing the effect (3, —
y_) itself, the experimenter is presented with N (Effect)*/4, which must then be
referred to an F' table with one degree of freedom. There is nothing to justify this
complexity other than a misplaced belief in the universal value of an ANOVA
table. What the experimenter wants to know is the magnitude of the effect (¥, —.
¥_), its standard error, and the ratio t = Effect/SE(effect). Also, since /F, , = 1,,,
referring F , = [N (effect)*/4]/s* to an F table is exactly equivalent to referring
.- ¥.)/2s/+/N (the effect divided by its standard error) to a ¢ table.

Most computer programs compute p values associated with the null hypothesis
atthe 5 and 1 % level of probability. These p values should not be used mechanically
for deciding on a yes-or-no basis what effects are real and to be acted upon and
what effects should be ignored. In the proper use of statistical methods information
about the size of an effect and its possible error must be allowed to interact with the
experimenter’s subject matter knowledge. (If there were a probability of p = 0.50
of finding a crock of gold behind the next tree, wouldn’t you go and look?) Graphical
methods, soon to be discussed, provide a valuable means of allowing information
in the data and in the mind of the experimenter to interact appropriately.

Exercise 5.2. Calculate the main effects and interactions for the yield and taste
of popcomn recorded below:

Brand of Ratio of Batch Size Yield of Taste
Test Popcorn, Popcorn/Oil, Cup, Popcorn, Scale 1-10,
Number 1 2 3 n y2
1 —(ordinary) ~(low) - 64 6
2 +(gourmet) —(low) -4 8 7
3 —(ordinary) +(high) -3 6 10
4 +(gourmet) +(high) - 9 3 9
5 —(ordinary) —(low) +(§ 8 6
6 +(gourmet) —(low) +( % ) 15 6
7 —(ordinary) -+(high) +(3) 9 9
8 +(gourmet) +(high) +(3) 17 2
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Partial Answer: Yield: 1 =5.1,2=1.1,3=48,1x2=07,1x3 =24,
2x3=04,1x%x2x3=-02.

What are the important factors for yield and for taste?

What are the dimensions of the active factor subspaces for yield and taste?

Exercise 5.3. For the following data calculate the main effects and interactions
and their standard errors. The 24 trials were run in random order.

Depth of Watering  Type of Yield

Test Planting (Times Lima

Condition (in.), Daily), Bean, Replication Replication Replication
Number 1 2 3 1 2 3
1 ~(})  ~ (once) — (baby) 6 7 6
2 +(2)  ~(once) — (baby) 4 5 5
3 ~(1)  + (twice) — (baby) 10 9 8
4 +(3)  + (twice) — (baby) 7 7 6
5 —(§)  —(once) + (large) 4 5 4
6 +(%) — (once) -+ (large) 3 3 1
7 —{( %)’ + (twice) + (large) "8 7 7
8 +(3)  + (wice) + (large) 5 5 4

Answer: | = -2.2,2=25,3=-20,1 x2=-03,1 x3=-022x3 =
0.2, 7 x2 x3 =0.0, standard error of effect = 0.30.

Exercise 5.4. Repeat Exercise 5.3, assuming that data for replication 3 are un-
available.

Answer: 1 = =2.1,2=26,3=—-19,1x2=-04,1x3 =0.!, 2x3 =
—0.1, 1 x2 x 3 = -0.1, standard error of effect = 0.23.

Exercise 5.5. Repeat Exercise 5.3 given the observations were randomly run
within each replicate, The design now becomes a randomized block with three
blocks and eight treatments.

Answer: Estimated effects are identical to those of Example 5.3. Standard error
of effect = 0.25.

Exercise 5.6. Suppose that in addition to the eight runs in Exercise 5.2 the
following popcorn yields were obtained from genuine replicate runs made at the
Center conditions: 1 = a mixture of 50% ordinary and 50% gourmet popcorn,
2 = medium, 3=1/2 cup: 9, 8, 91/2, and 10 cups. Use these extra runs to
calculate standard errors for main effects and interactions. Plot the effects in
relation to an appropriate reference distribution and draw conclusions.
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Answer: Main effects and interactions remain unchanged. They are given in
Exercise 5.2. Estimate of o2 is from center point s> = 0.73 with three
degrees of freedom. Standard error of an effect = 0.60. Reference ¢
distribution has three degrees of freedom; scale factor = 0.60.

Exercise 5.7. Show that the sum of squares in the ANOVA table associated with
any effect from any two-level factorial design containing (including possible
replication) a total of N runs is N x (estimated effect)?/4.

‘Exercise 5.8. Given the data in Table 5.3, an alternative way to estimate the
variance is to set up a one-way classification ANOVA table. For the 16 obser-
vations and 8 treatments of this example, complete the ANOVA table and show
that s° = § with v = 8 degrees of freedom. |

5.11. EYEING THE DATA

Testing Worsted Yarn

Table 5.6 shows part of the data from an investigation (by Barella and Sust in Box
and Cox 1964), later discussed in greater detail, on the strength of a particular
type of yarn under cycles of repeated loading. This is a 2* factorial design run
with three factors: length of specimen (A), amplitude of load cycle (B), and load
(C). In an experimental run a piece of yarn of given length (A) was continually
stretched a certain amount (B) under a given load (C) until it broke. The response
was y = log Y, where Y is the number of cycles to failure. It is convenient to
refer to the quantity y as the durance of the fiber.

It you now look at the estimated effects shown in Table 5.7, you will see that
all the interactions are negligibly small in relation to the main effects, Jeading
to the conclusion that over the ranges of factors studied changing the length of
specimen from 250 to 350 mm increased the durance (by about 8 units), increas-
ing the amplitude from 8 to 10 mm reduced durance (by about —6 units), and
increasing the load from 40 to 50 units reduced durance (by about —3.5 units).

Contour Eyeballing

When, as in this yarn example, the main effects are dominant and distinguishabl.e
from noise, a helpful device for getting a closer look at what is going on is
“contour eyeballing.” This uses some elementary ideas from response surface
modeling, a subject discussed more fully in Chapter 12. Figure 5.6a shows the
numbering of the runs (in standard order) and Figure 5.6b a cubé plot of the
yarn data. From the analysis in Table 5.7 you will see that the factors appear
to behave approximately independently (with no interactions) in their effects on
durance and a reasonable further assumption is that, between the two levels of
any given factor, the value of y changes approximately at a constant rate, that
is, “linearly.”
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Table 5.6. A 2* Factorial Design to Study Effect of A
(Length of Specimen), B (Amplitude of Load Cycle),
and C (Load) in Investigation of Strength of Yarn

Levels

Factors - +
A Length, mm 250 350
B Amplitude, mm 8 10
C Load, g 40 50
Run Factors ‘ Durance
Number A B C y
1 - - - 28
2 + - - 36
3 - + - 22
4 + + - 31
5 — - + 25
6 + - . + 33
7 - + + 19
8 + + + 26

Table 5.7. Estimates of Main Effects and Interactions
for Yarn Experiment

Mean 27.5
A . 8
B -6
C -35
AB 0
AC -0.5
BC -0.5
ABC —0.5

Now on these assumptions consider the problem of finding all the various
Corld'itions of the factors A, B, and C that give, say, a durance of 25. Look
at Figure 5.6b. Referring to the edge of the cube joining runs 1 and 3 as the
(1, 3) edge, you will see the number 28 at the bottom of this edge and 22 at
the- top, so you would expect the value 25 to be about midway along this line.
Thts point is marked with a dot in Figure 5.65. Now look at the edge (3, 4). The
difference between the values 22 and 31 is 9, so you would expect a value of
25 about one-third of the way along this edge. Again this point is marked with
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Figure 5.6, (a) Cube plot of numbered runs. (b) Cube plots of durance results for yarm experiment.
(c) Approximate contour planes, y = 25, 30, 35,

a dot. Similarly, you would expect to find a value of about 25 six-sevenths of
the way along the (7, 8) edge and near the bottom of the (5, 7) edge. If you join
the dots together, they outline the plane marked 25 in Figure 5.6¢. The plane
thus approximately represents all the various combinations of the factors length,
amplitude, and load, where you would expect to get a durance of approximately
25. It is called the 25 contour plane. In a similar way, you can obtain the
approximate contour planes for y values of 30 and 35. (We discuss model-based
methods for estimating contour planes later.)

The contour plot provides a useful summary of what the experiment is telling
you about how durance y depends on the three factors length, amplitude, and load.
In particular, it illustrates with great clarity how the durance value is increased
by increasing length, reducing amplitude, or reducing load.

Exercise 5.9. Make an approximate contour plot using the data in Exercise 5.2.

The Direction of Steepest Ascent

The direction at right angles to the contour planes indicated by an arrow in
Figure 5.6 is called the direction of steepest ascent. Tt is followed when, in the
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experimental design units, changes of factors A, B, and C are made proportional
to the effects they produce. In this case A = 8, B = —6, and C = —3.5, so, for
example, for every 0.8 of a unit change in A you should simultaneous make a
—0.6 unit change in B and —0.35 unit change in C. This gives the orientation
of the arrow in Figure 5.6.

5.12. DEALING WITH MORE THAN ONE RESPONSE: A PET FOOD
EXPERIMENT

When a number of different responses y;, vz, ... are measured in each experi-
mental run, factorial experiments are of even greater value because they allow
the investigator to consider simultancously how a number of factors affect each
of a number of responses. For illustration, we use some of the data from an
interesting experiment due to Pratt and Tort (1999).

The manufacturer of pet food had received complaints that packages of food
pellets received by the customer contained an unsatisfactorily large amount of
powder.

Denote the amount of powder in the product received by the customer by y,.
For a batch of routinely manufactured product the value of y, was not known
but y,, the amount of powder produced in the plant, could be measured rather
easily. On the assumption that y, was a good substitute indicator for y;, control
of the plant had been attempted by keeping y, as low as possible. Unfortunately,
control by this means proved ineffective.

Table 5.8 shows data from part of an experiment to study the effect of chang-
ing manufacturing conditions. A total of just eight plant runs were made in a
23 factorial experiment with the factors temperature (A), flow (B), and zone
(C) each varied at two levels.*

In each run, four responses were measured: powder in product y;, powder in
plant y;, a measure of yield ys, and energy consumed y;. Values for the powder
in product y; as it would have been received by the customer were obtained by
taking representative samples from the eight experimental batches and subjecting
them to the same kind of packaging, shaking, and handling that they would
receive before reaching the customer. The values obtained for y; and powder in
the plant y,, yield of product produced y3;, and electrical energy consumed yy
are shown in Table 5.8.

The experimenters were surprised to find that the eight values of y;, when
plotted against the values of y,, as in Figure 5.7a, showed no positive correlation.
Thus the previous policy of attempting to control powder in the product y; by
observing powder in the plant y, was useless.

Therefore, the experimenters decided to concentrate on finding better operating
conditions (A, B, C) that would reduce the amount of powder in the product y

:A fourth factor, not discussed here, was varied but the changes appeared to be without effect.
The data given by the authors for powder in product, powder in plant, and yield have all been
Mmultiplied by 100 to simplify calculations.
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Table 5.8. A 2? Factorial Design to Study Effect of Temperature, Flow, and
Compression Zone on Four Responses

- +
A Conditioning temperature  80% of max  Max
B Flow 80% of max  Max
C  Compression zone 2 2.5
Responses
Factor Levels
(Process Conditions)’ Powder in Powder in Yield ~ Energy
Product x 100,  Plant x 100, x100,  Consumed,
A B C b7 y2 ¥3 A
1 - - - 132 166 83 235
2 + - - 107 162 85 224
3 -+ - 117 193 99 255
4 + + - 122 185 102 250
5 - - + 102 173 59 233
6 + - + 92 192 75 223
7 - + + 107 196 80 250
8 + + + 104 164 73 249

without losing too much yield y; or requiring too much electrical energy y4. The
data are plotted on the factorial cubes. shown in Figures 5.7h-e.

A Rough Estimate of Error

In the original experiment four duplicate runs were made* from which an ap-
proximate estimate of the standard deviation of the various responses could be
obtained. For example, for powder in the product y, the repeated runs gave the
results

(132, 118) (122,127) (92,91) (107,112)

providing an estimate for the standard deviation &, = 5.6 with four degrees of
freedom. Using this estimate, the y; effects have standard errors 5.6/ V2 =4.0.
Similar calculations yield the standard errors for the effects associated with y3
and y4. [t must be remembered that the standard errors themselves are subject to
large errors when based on so few degrees of freedom. For example, by looking
at a ¢ table, you will see that such estimates must be multiplied by almost 3
(2.776) to obtain 95% confidence limits for an effect.

* The effects of replication on the estimated effects is ignored here. Later you will see how changes
in effect estimates due to partial replication can be easily taken into account. They do not change
the conclusions in this example.
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Exercise 5.10. What do these data suggest are the active subspaces for y;, y,,
¥3. and v4?

Estimated main effects and interactions for each of the responses yi, y;, ys,
¥4 are given in Table 5.9. Effects least likely to be due to noise are shown in
bold type. Notice that powder in the plant y, seems not convincingly related to
any of the manufacturing variables. This further confirmed its uselessness for
controlling the process.

Ideally the experimenter would have liked to decrease the powder in the
product y,, increase yield y3, and decrease energy consumption ys. Often it
is possible 10 see how to satisfy a number of movements by overlaying contour
plots for different responses one on the other. The orientations and overlays of
the contours of the active factor subspaces for y;, y3, and y; did not point to
any clear solution in this example. It was necessary, therefore, to look at the
possibilities for compromise.

The most striking effect on powder in the product y, was produced by factor
C (zone). The change in the level of this factor reduced v; by about —18.2 units
and had little effect on the energy consumption ys, but unfortunately it decreased
the product yield y3 by about —20.5. Notice also that while increasing factor B
(flow) improved the yield by about 13 units, it increased energy consumption by
about 22.3 units. The clearest way to perceive the possibilities of compromise
was by comparing the approximate contour planes. Consequently, even though
there was evidence of nonlinearity (in particular because of a nonnegligible AB
interactions. for y) and y4), results in Figure 5.7 were used to obtain the approx-
imate eyeball contour plots in Figure 5.8. To determine a suitable compromise,
the costs of lower yield and higher energy consumption were calculated and alter-
native possibilities suggested to management, who perhaps had a better idea of
the cost of displeasing the customer by having too much powder in the product.

Problems of this kind are common. To illustrate with the present data, here is
a typical calculation. Suppose that, per unit package sold, an increase in yield of

Table 5.9. Calculated Effects and Standard Errors for Pet Food Experiment

Powder in Powder in
Product, ‘Plant, Yield, Energy,
3 y2 V3 ya
Average 1104 178.9 82.0 239.8
Temperature, A -824+40 -63+£74 3.5+£49 —6.8+1.1
Flow, B 43+£4.0 11.3+£74 13.0+4.9 22.3+1.1
Zone, C -18.2+ 4.0 48+74 =20.5+4.9 —23%1.1
AB 9.3+4.0 -13.7x74 -5.5+49 38+1.1
AC 1.7+ 4.0 -03+£74 1.0+ 4.9 1.3+£1.1
BC 434490 -13.7%£74 —-3.5+49 —08%1.1

ABC —-5.7+£4.0 -11.7+74 —-6.0+£ 4.9 0.8+1.1
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Figure 5.8. “Eyeball contour plbts" for (a) powder in product, y1: (b) yield, ¥3: and (¢') energy, .
(d) Savings calculated from (&) and (¢) and the estimated break-even contour.

one unit produces a savings of 0.5 cents and an increase in energy consumption
of one unit costs 0.2 cents. Since run number 1 represents standard conditions,
this point has been scored zero in Figure 5.84. Changing the conditions from
those of run number 1 to those of run 3 gives an observed increase in yield
of 99 — 83 = 16 units, which would produce an estimated savings of 8 cents
per package. But such a change produces an increased energy consumption of
255 — 235 = 20, costing 4 cents per package. The sum 8 — 4 = 4 is the number
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shown as “savings in cents per package™ for run 3. The other numbers are calcu-
lated in the same way. The approximate contours shown in Figure 5.84 are for
zero savings (break even). By simultaneously studying Figures 5.8a and 5.84,
‘management was supplicd with information to make an educated choice among
the available options. The choice will depend on a number of issues, such ag
the quality and prices of the competitors’ products. In particular, you will notice
that at point P in Figure 5.8d you should be able to achieve about 30 units lessg
powder in the product at no extra cost. Projected process improvements should,
of course, be confirmed by further experimentation.

You should not necessarily limit consideration to the region covered by your
initial experimental design. Current results frequently suggest where further ex-
perimentation might be sufficiently fruitful. For example, it seems clear from
the present data that substantial gain might have been possible by increasing
temperature above what was previously regardéd as the maximum. If there was
no objection to running at higher temperatures, then you might decide on a further
experimental region like that represented by the bold lines in Figure 5.9,

When several responses must be considered together, a planned design of this
kind can be a great incentive to innovation. It will serve to confirm those of our
beliefs that are true, discredit those that are mythical, and often point the way on
a trail of new discovery.

The present experiment produced surprises and questions for the investigators:

(a) The powder in the plant response y» previously used to control the process
was not related to the powder in the product y; or, indeed, to any of the
three factors discussed above. Why was this?

(b) Increasing temperature with low flow rate would have been expected to
increase energy consumption but actually reduced it. Why?

pecervsrrrmcrcsrubcsanavovrivocsrcovocnn -t M
|
;
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i :
! i
1,-'1 """""""""""""""" 1
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Figure 5.9. Possible additivnal experiments to be appended to the 23 factorial.
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5.13. A 2* FACTORIAL DESIGN: PROCESS DEVELOPMENT STUDY

Often there are more factors to be investigated than can conveniently be accom-
modated within the time and budget available, but you will find that usually you
can separate genuine effects from noise without replication. Therefore, in the
pilot plant study, rather than use 16 runs to produce a replicated 2 factorial,
it would usually have been preferable to introduce a fourth factor and run an
unreplicated 2% design. (Or, as you will see in the next chapter, employ the 16
runs in a half-replicated 2% design and study five factors.)

For illustration, a process development experiment is shown in which four
factors were studied in a 2% factorial design: amount of catalyst charge 1, tem-
perature 2, pressure 3, and concentration of one of the reactants 4. Table 5.10a
shows the design, the random order in which the runs were made, and the response
y (percent conversion) at each of the 16 reaction conditions. Table 5.10b displays
the contrast coefficients that determine the estimates in Table S.11 of the four
main effects, six two-factor interactions, four three-factor interactions, and onc
four-factor interaction.

Exercise 5.11. Add nine units to observations 2,3,6, 7,9, 12, 13, 16in Table 5.10a.
Recalculate the effects. Explain what you observe.

Answer: These eight runs are those that correspond to plus signs in the 124 col-
umn. Thus the 124 interaction effect is increased by 9 units, but because
of orthogonality, none of the other estimates is affected. Notice, how-
ever, that interaction 124 is now picked out as deviating from the line.

Table 5.10a. Data Obtained in a Process Development Study Arranged in Standard
(Yates) Order

Yates Conversion Random

RunNumber 1 2 3 4 (%) Order Variable - 4+
1 - - — - 70 8 1: Catalyst charge (Ib). 10 15
2 + - - - 60 2 2: Temperawre (°C) 220 240
3 - 4+ - - 89 10 3: Pressure (psi) 50 80
4 + 4+ - - 81 4 4 Concentration (%) 10 12
5 - - + - 69 15
6 + - + - 62 9
7 -+ + - 88 1
8 + + + - 81 13
9 - - - + 60 16
10 + - - + 49 5
1l -+ - + 88 I
12 + + - + 8 14
13 - - + + 60 3
14 + - + + 52 12
15 -+ + + 86 6
16 + + + + 79 7
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Table §5.10b. Table of Contrast Coefficients
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Table 5.11. Estimated Effects from a 2* Factorial
Design: Process Development Example

Estimated Effects 4

Effects SE

Average 72.254£0.27

1 —8.00 £ 0.55

2 24.00 £ 0.55

3 —0.25 £ 0.55

4 -5.50 £ 0.55

12, 1.00 £ 0.55

13 0.75£0.55

14 0.00 £ 0.55

23 —-1.25%0.55

24 4.50 £ 0.55

34 —0.25£0.55
123 -0.75.
124 0.50
134 -0.25
234 -0.75
1234 -0.25
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Assessing the Effects of the Factors Using an Internal Reference Set

A dot plot of the 15 calculated effects is shown in Figure 5.10. No direct estimate
of the experimental error variance is available from this 16-run experiment since
there are no replicates, but a reasonable assumption might be that the five highest
order interactions are largely due to noise and can therefore provide a reference
set for the remaining effects.

The estimated interaction effects 123, 124, 134, 234 and 1234 forming this
reference set are identified by the open circles in Figure 5.10. Employing these
five estimates, a pooled estimate of V(¥ — ¥_) is given by

(SE effect)? = 1{(=0.75)* + (0.50)* + (=0.25)* + (=0.75)* + (—0.25)*}
=0.30 '

provides the square of the standard error for the remaining main effects and two-
factor interaction; thus SE(effect) = +/0.30 = (.55. On this basis it is highly
likely that the main-effect estimates /, 2, and 4 and the interaction 24 represent
real effects. Furthermore, on the usual normal theory assumptions. the estimated
standard error s = 0.55 may be used to produce the reference ¢, distribution hav-
ing five degrees of freedom shown in Figure 5.10.* You would find that if these
normal assumptions are exactly true then exactly 95% of the distribution would
be contained within the interval %15 ¢ g2sSE (effect) = £2.57(0.55) = £1.41. But
certainly in this example these assumptions do not need to be made, and you can
arrive at approximate and more transparent conclusions simply by regarding the
dot plot of the estimates of the higher order interactions in Figure 5.10 as the
basic reference distribution as was done will the residual plot in the graphi-
cal ANOVA of Chapter 4. It is a direct plot of what you know without further
assumptions.

Interpretation of the Process Development Data

Proceeding on the basis that the main effects of factors 1, 2, and 4 and the
two-factor interaction 24 are distinguishable from noise you find:

1 4 8§ P 24 2
o o ® ) L ] .i

! | i i
-10 -5 0 5 24

Figure 5.10. Dot plot of the effects from the process development example. High-order interaction
cffects used to provide a reference distribution for the remaining effects are shown by open circles.
A reference 1, = § distribution is also shown,

*The ¢ distribution is drawn with a scale factor equal to the standard error 0.55 of an effect. The
ordinates for 7 distributions are given in Table B2.
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Figure §.11. Graphical illustrations of temperature—catalyst interaction using (@) a two-way table
and (b) a contrast diagram.
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Figure 5.12. Cube plot for factors 1, 2, and 4 at the low and high values of factor 3.

1. An increase in catalyst charge (factor 1) from 10 to 15 pounds reduces
conversion by about 8%, and the effect is consistent over the levels of the
other factors tested.

2. Since there is an appreciable interaction between temperature (factor 2) and
concentration (factor 4), the effects of these factors must be considered
jointly. The nature of the interaction is indicated by the two-way table
in Figure 5.11a obtained by averaging over levels of the other factors or,
equivalently, by the contrast diagram in Figure 5.11b. These representations
make clear that the interaction occurs because an increase in concentration
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reduces conversion at the lower temperature but at the higher temperature
produces no appreciable effect.

3. Locally, at least for the factors tested, factor 3 (pressure) is essentially
inert. This is because neither the main effect 3 nor any of the interactions
13, 23, 34 involving factor 3 show effects that cannot be readily explained
by the noise. Thus you have a 4D experiment revealing a local 3D active
subspace in factors 1, 2, and 4. This tells you that locally you should be
able to manipulate factor 3 to improve some other response (e.g., cost)
without very much affecting conversion.

4. In Figure 5.12 cube plots in factors 1, 2, and 4 are made, one for the
lower and one for the upper levels of factor 3. If over this range factor
3 is virtually inert, then the corresponding pairs of data values found on
the two cubes should act approximately as replicates. From inspection this
appears to be the case.

5.14. ANALYSIS USING NORMAL AND LENTH PLOTS

Two problems arise in the assessment of effects from unreplicated factorials:
(a) occasionally meaningful high-order interactions do occur and (b) it is neces-
sary to allow for selection. (The largest member of any group is by definition
large—but is it exceptionally large?) A method due to Cuthbert Daniel* (1959) in
which effects were plotted on normal probability paper (discussed in Chapter 2)
can provide an effective way of overcoming both difficulties. Today such plots
are commonly produced on the computer screen.

Suppose that the data from the 2* process development experiment had occurred
simply as the result of random variation about a mean and the changes in levels of
the factors had no real effect on the response. Then these m = 15 effects represent-
ing 15 contrasts between pairs of averages would have roughly normal distributions
centered at zero and would plot on a normal probability scale as a straight line.
To see whether they do, you can order and plot the 15 effects obtained from the
process development experiment as shown in Figure 5.13 (If you want to do this
manually, the appropriate scaling for the P(%) axis is from Table E at the end of
the book for m = 15.) As shown in Figure 5.13, 11 of the estimates fit reasonably
well on a straight line called here the “error line” since these estimates are such as
nﬁght be produced by noise alone. However, the effects 7, 2, 4, and 24 fall off the
line and are not easily explained as chance occurrences. Thus, for this example,
the conclusions drawn from the normal plot are precisely those reached earlier.

Some experimenters prefer to use a half-normal plot, that is, to plot on the
appropriate scale the absolute values of the effects. This diagnostic tool, originally:
Proposed by Daniel (1959), proved useful for detecting defective randomization,

*The reader is urged to study Daniel’s book (1976), Applications of Statistics to Industrial Exper-
imentation, which takes an appropriately skeptical attitude toward mechanical analysis of data and
Provides methods for diagnostic checking, including the plotting of factorial effects and residuals
on normal probability paper.
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bad values, and the dependence of variance on mean. Later Daniel (1976) noted
that such plots, since they canceled irregularities in the data, lacked sensitivity
to other signals. Many computer programs now produce both plots. A full and
valuable discussion on how normal plots may be used to check assumptions is
given by Daniel (1976).

Lenth’s Analysis as an Alternative to Normal Plots

An alternative procedure to a normal or half-normal plot of the estimated effects
is due to Lenth (1989). The median m of the absolute values of the k effects
is first determined. (The absolute values of the effects also appear on the half
normal plot.) An estimate of the standard error of an effect, called a pseudo
standard error, is then given by sy = 1.5 m. Any estimated effect exceeding 2.5s¢
is now excluded and, if needed, m and sy are recomputed. A “margin of error”
ME (an approximate 95% confidence interval for an effect) is then given by
ME = to975,4 X So, Where d = k/3. All estimates greater than the ME may be
viewed as “significant,” but, of course, with so many estimates being considered
simultancously, some will be falsely identified. Lenth thus next defines a *“simul-
taneous margin of error” SME =1, 4 x 5o, where y = (1 + 0.95'/%)/2. Estimated
effects that exceed the SME are declared active while those that are less than the
ME are declared inert. '

Using the data from the process development example (see Table 5.11), you
will find 5o = 1.5(0.50) = 0.75 with & = 5 to give ME = 2.57(0.75) = 1.93 and
SME = 5.22(0.75) = 3.91. Thus (see Fig. 5.13c as before), the estimated effects
1, 2, 4, and 24 are identified as active and all other estimates considered as noise.

Lenth’s table for 199754 and ¢, 4 for different numbers of estimated effects is as
follows:

Number of Estimates. 10.975.4 ty.d
7 3.76 9.01

15 2.57 5.22

31 2.22 422

63 2.08 3.91

127 2.02 3.84

As with any other technique, it is important not to use this method merely as a
Pramless machine for determining “significance” or insignificance.” The diagram
Is the most important part of the method, and like a normal plot this diagram

should be examined in the light of subject matter knowledge to determine how
0 proceed.

A Diagnostic Check

Normal plotting of residuals provides a diagnostic check for any tentatively
Cntertained model. For example, in the process development example, if it is
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accepted that all estimated effects with the exception of J = —8.0, 2 = 24.0,
4 = —5.5, and 24 = 4.5 could be explained by noise, then the predicted response
(percent conversion) at the vertices of the 2 design would be given by the fitted

model
—8.0 24.0 =55 4.5
2 it Y .
7...25+( 5 )x;-i—( 2,)124—( > ).m-!—(z),_xgx,;

where x, X3, and x4 take the value —1 or +1 according to the columns of signs
in Table 5.10.* Notice that the coefficients that appear in this equation are half
the calculated effects. This is so because the calculated effects yield changes of
two units along the x axis from x = —1 to x = +1.

o
y

Exercise 5.12. Confirm that the values of y, ¥, and y — y are as follows:

y 70 60 89 81 69 62 88 81
y 69.25 61.25 8875 8075 69.25 61.25 8875 80.75
y—y 075 —-125 025 025 -025 075 -075 025

y 60 49 8 8 60 52 8 79
¥ 59.25 51.25 8775 79.75 5925 5125 8175 79.75
y—§ 075 -225 025 225 075 075 —175 —0.75

Make a plot of these residuals on normal probability paper for m = 16. What
do you conclude?

Answer: All the points from this residual plot now lie close to a straight line,
confirming the conjecture that effects other than 1, 2, 4, and 24 are
readily explained by the random noise. This residual check is valuable
provided that the number of effects eliminated (four in this example) is
fairly small compared with n (here n = 16),

A First Look at Sequential Assembly

In Chapter 1 the process of investigation was described as iterative, involving
deduction and induction. What is gained by running an experiment is not only the
immediate possibility of process improvement; the results may also indicate the
possibilities for even further advance and thus show where additional runs need
to be made. When this is done, the experimental design is built up in pieces—a
process we call sequential assembly. A simple example occurred in a study by
Hill and Wiles (1975).

*The cross-product terms suggest that quadratic terms (involving 1 and x2) might be nceded to
adequately represent the response at interpolated levels of the factors. Such terms cannot be esti-
mated using two-level designs. Additional runs can convert the existing design ‘into, for example, 8
central composite design atlowing the estimation of quadratic effects. These methods are discussed
in Chapters 10 and 11.
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The objective was to increase disappointingly low yields of a chemical product.
Three factorial designs were run in sequence in this investigation, but only the
first of these will be described here. In phase I a 23 factorial design with factors
concentration (C), rate of reaction (R), and temperature (T) was run. Table 5.12
displays the 2* design, recorded observations, and estimated effects. Analysis of
the effects shows the dominating influence of the main effect of C.

In phase II, to check further on the influence of factor C, three extra exper-
imental points were run along the concentration axis, as shown in Figure 5.14q
and Table 5.12. These “axial” experiments were run at the intermediate levels of
R and T but over a wider range of C. Figure 5.14 shows the resulting sequentially
assembled design and a graph of yield versus concentration for all 11 runs. The
conclusions, which were of great practical value, were (1) that over the factor
region tested temperature T and rate of reaction R were essentially inert, that
is, without detectable effect, but that (2) reducing the level of factor C could
produce a much higher yield.

Table 5.12. A 23 Factorial with Sequentially Added Runs

Factor Combinations C R T Yie Effects Residuals
Phase 1
1 -1 =1 =1 754 | Average 743 -0.6
2 +1 -1 -=1. 739 C -34 +13
3 -1 41 -1 768 R 0.6 +0.8
4 +l 41 -1 728 T -0.8 +0.2
5 -1 -1 41 1753 CR -0.7 -0.7
6 +1 -1 41 714 CcT -0.6 -1.2
7 -1 41 41 765 RT 0.4 +0.5
8 +1  +1 41 723 CRT 0.6 -0.3
Phase 11
9 -2 0 0 79
10 0 0 0 74
11 2 0 0 69
76 -_/72 80 —
A 4
l t
k]
79 | I 74 69 2 757 ) .
RI 75 ————— —'1 | :
/ / /m :
75 — 74 70 -
— .
©) Concentration

(a) 2]

Figure 5.14. (@) Sequentially composed design. (b) Yicld versus levels of concentration C.
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Importance of Negative Findings

The finding of the large effect of concentration was important, but also of special
significance was the discovery that the two factors rate (R) and temperature
(T) had very little influence on yield over the ranges considered and did not
appreciably interact with C. This 3D experimental space had a 1D active factor
space and a 2D locally inert factor space. Knowledge that the system was robust
to changes in the specific factors R and T reduced the number of things the plant
operators would need to worry about and raised the possibility of using these
factors to improve other responses.

Serendipity: Discovering the Unexpected

In a later experimental design in the same investigation four factors were varied,
No main effects or interactions were detected but a very large residual noise. The
reactant combinations had, of course, been run in random order and when the data
were plotted in time order a marked upward shift of about 2% yield was detected
part. way through the experiment. It was later found that this shift occurred
simultaneously with a change in the level of purity of a feed material. When the
existence of this assignable cause was later confirmed, the authors declared they
believed they had finally found the “ghost” which had for some time been the
cause of trouble with routine production. Discovery of the unexpected proved
more important than confirming the expected.

5.15. OTHER MODELS FOR FACTORIAL DATA

Always remember that it is the data that are real (they actually happened!). The
model (“empirical” or “theoretical”) is only a hypothetical conjecture that might
or might not summarize and explain important features of the data. But while it
is true that all models are wrong and some are useful, it is equally true that no
model is universally useful.

The Heredity Model

The model discussed so far analyzes the factorial design data in terms of main
effects and interactions. This model has been widely used with great success since
the inception of these designs in the 1920s. It has more recently been elaborated
(McCullagh and Nelder, 1989; Chipman, 1996) to include the so-called laws
of hc,redlty These represent beliefs, for example, that a two-factor interaction
AB is unlikely without one or both of the corresponding main effects A and B.
Although such groupings often do occur, there are important circumstances when
they do not.

Consider a two-level design used in an industrial investigation whose object i$
to increase a response y. The main effects A, B, ... are estimates of the deriva-
tives dy/3A, 8y/dB, .... Similarly two-factor interactions are estimates of the
mixed second-order denvauves, for example, the interaction AB is an estimat¢
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of 8%y/dA dB. Suppose we find that the main effects A and B are negligible
but that the interaction AB is large: This implies that we have small first-order
derivatives but a large second-order derivative. This is exactly what will occur in
the neighborhood of a maximum or ridge system. Indeed, the now widely used
composite design was first introduced (Box and Wilson, 1951; Box, 1999) to illu-
minate exactly this circumstance. The location of experiments near a maximum or
stationary value would be expected to be rather common because in much experi-
mentation a maximum is precisely what is being sought. In such experimentation,
progress is made by exploiting and hence eliminating first-order (main) effects.

The Critical Mix Model

You need to remember that sometimes in the analysis of factorials the main
effect—interaction model is not relevant at all. When factors are tested together
in a factorial design, it sometimes happens that a response occurs only when there
is a “critical mix” of the factors, qualitative and quantitative.* Thus, for example,
a binary mix is required for sexual reproduction, a tertiary critical mix is required
to make gun powder, a fourfold critical mix is required for the operation of an
internal combustion engine, and various critical mixes are required to produce
metallic alloys. While it remains true that mistakes of some kind—copying errors
or errors in the conduct of an experiment—are the most likely reason for one or
two discrepant runs, nevertheless the possibility of a critical mix must also be
considered, as the following example illustrates.

An Experiment with Deep Groove Bearings

An experiment was run by Hellstrand (1989) with the object of reducing the wear
rate of deep groove bearings. His 2% design employed two levels of osculation O,
two levels of heat treatment H, and two different cage designs C. The response is
the failure rate y (the reciprocal of the average time to failure x 100.) The obser-
vations and the calculated main effects and interactions are shown in Table 5.13.

From the normal plot of the estimated effects in Figure 5.15a it might be
concluded that the data showed nothing of interest. However, look at the normal
plot of the original eight observations in Figure 5.15b.

This indicates that the data from two of the runs are very different from all the
others. An effect occurs only when heat treatment and osculation are both at their
Plus levels. As illustrated in Figure 5.15¢, high osculation and high temperature
together produced a critical mix yielding bearings that had an average failure rate
one-fifth of that for standard bearings! This effect was confirmed in subsequent
¢xperimentation, and as Hellstrand reported, this large and totally unexpected
effect had profound consequences.

*We encountered a binary critical mix earlier in this chapter in the experiments to determine the.

effects of three factors on the properties of a polymer solution. (See Figure 5.2.) Yellowness occurred

"”"}‘ when factors | and 2 were both at their plus levels, '
Osculation is a measure of the contact between the balls and the casing.
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Table 5.13. Bearing Example: 23 Design with Data
and Calculated Effects

Design
Data
(0] H C y Effects Estimates
— - - 59 Mean 4.0
-+ - — 4.0 (0} =26
- -+ - 39 H -2.0
+ + - 1.2 C _ 0.5
- - -+ 5.3 OH -1.5
+ - -+ 4.8 ocC —0.4
- + -+ 6.3 HC 0.5
+ + -+ 0.8 OHC -1.1
95 4 95 1
90 90 A
75 1 75 1
© 14
8 50 4 S 501
[+ @«
o o
25 257
10 4 101
5 T T L § Y T T T 5" ‘1 T T T T (] i
-3.0 -2.5 -2.0 -15 -1.0 -0.5 00 05 O 1 2 3 4 5 6 7
Eflects Failure rate
(a) (b)
6.3 0.4
/ / A
3.9 1.24
+
Heat

[5;]
()
H
©

|
o
©
&
o
'

- Osculation +

(o)

Figure 5.15. (a) Norimal plot of effects. (b) Normal plot of data. (c) Cube plot of failure rate.
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Remembering that bearings like these had been made for decades, it is surpris-
ing that so important a phenomenon had previously escaped discovery. A likely
explanation is that until very recently many experimenters had little knowledge
of multifactor experimental design. The instruction they received may never have
questioned the dogma that factors must be varied one at a time while all oth-
ers are held constant, a practice that has been discredited now for over 80 years.
Clearly, one-factor-at-a-time experimentation could not uncover the phenomenon
discovered here. The good news for engineers is that many important possibilities
that depend on interaction or a critical mix must be waiting to be discovered.

5.16. BLOCKING THE 2X¥ FACTORIAL DESIGNS

In a trial to be conducted using a 2* factorial design it might be desirable to
use the same batch of raw material to make all eight runs. Suppose. however,
that batches of raw material were only large enough to make four runs. Then the
concept of blocking referred to in Chapters 3 and 4 might be used. Figure 5.16
shows a 23 factorial design run in two blocks of four runs so as to neutralize
the effect of possible batch differences. This is done by arranging that the runs
numbered 1, 4, 6, and 7 use the first batch of raw material and those numbered
2, 3, 5, and 8 use the second batch.

A 23 design is blocked in this way by placing all runs in which the contrast
123 is minus in oné block and all the other runs, in which 123 is plus, in the
other block. To better understand the idea, suppose all the results in the second
block were increased by an amount &, say, then whatever the value of A, this
block difference would affect only the /23 interaction; because of orthogonality
it would sum our in the calculation of effects /, 2, 3, 12, 13, and 23.

Notice how this happens. In Figure 5.16 all three main effects are contrasts
between averages on opposite faces of the cube. But there are two filled squares
and two open squares on each face so that any systematic difference produced
by batches is eliminated from the main-effects contrasts. Look again at the figure
and consider the diagonal contrasts that correspond to the two-factor interactions.
Again two black squares and two white squares appear on each side of the
contrast. Thus, any systematic difference between the two blocks of four runs
will be eliminated from all main effects and two-factor interactions.

What you have gained is the elimination of any systematic difference between
the blocks. You have had to give a little to get this substantial advantage. The
three-factor interaction and any batch (block) difference are deliberately con-
Jounded (i.e., confused). You cannot therefore estimate the three-factor interaction
Separately from the batch effect. However, often (but not always) this high-order
Interaction 123 can be assumed unimportant.

Generation of Orthogonal blocks

Ip the 23 factorial example, suppose that you give the block variable the iden-
Ufying number 4. Then you could think of your experiment as contain