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Distributions
Discrete
Binomial - x successes in n events, each with p probability
→
(n
x

)
pxqn−x, with µ = np and σ2 = npq

– If n = 1, this is a Bernoulli distribution

Geometric - first success with p probability on the nth trial
→ qn−1p, with µ = 1/p and σ2 = 1−p

p2

Negative Binomial - number of failures before r successes
Hypergeometric - x successes in n draws, no replacement,
from a size N population with X items of that feature

→
(
X
x

)(
N−X
n−x

)
(
N
n

) , with µ = nX
N

Poisson - number of successes x in a fixed time interval, where

success occurs at an average rate λ → λxe−λ

x!
, with µ = σ2 = λ

Continuous
Uniform - all values between a and b are equally likely

→ 1
b−a with µ = a+b

2
and σ2 =

(b−a)2

12
or n2−1

12
if discrete

Normal/Gaussian N(µ, σ), Standard Normal Z ∼ N(0, 1)

– Central Limit Theorem - sample mean of i.i.d. data
approaches normal distribution

– Empirical Rule - 68%, 95%, and 99.7% of values lie within
one, two, and three standard deviations of the mean

– Normal Approximation - discrete distributions such as
Binomial and Poisson can be approximated using z-scores
when np, nq, and λ are greater than 10

Exponential - memoryless time between independent events
occurring at an average rate λ → λe−λx, with µ = 1

λ
Gamma - time until n independent events occurring at an
average rate λ

Concepts
Prediction Error = Bias2 + Variance + Irreducible Noise
Bias - wrong assumptions when training → can’t capture
underlying patterns → underfit
Variance - sensitive to fluctuations when training→ can’t
generalize on unseen data → overfit
The bias-variance tradeoff attempts to minimize these two
sources of error, through methods such as:

– Cross validation to generalize to unseen data
– Dimension reduction and feature selection

In all cases, as variance decreases, bias increases.

ML models can be divided into two types:

– Parametric - uses a fixed number of parameters with
respect to sample size

– Non-Parametric - uses a flexible number of parameters and
doesn’t make particular assumptions on the data

Cross Validation - validates test error with a subset of
training data, and selects parameters to maximize average
performance
– k-fold - divide data into k groups, and use one to validate
– leave-p-out - use p samples to validate and the rest to train

Model Evaluation
Regression
Mean Squared Error (MSE) = 1

n

∑
(yi − ŷ)2

Sum of Squared Error (SSE) =
∑

(yi − ŷ)2

Total Sum of Squares (SST) =
∑

(yi − ȳ)2

R2 = 1− SSE
SST

, the proportion of explained y-variability

Note, negative R2 means the model is worse than just
predicting the mean. R2 is not valid for nonlinear models, as
SSresidual+SSerror 6= SST .
Adjusted R2 = 1− (1−R2) N−1

N−p−1
, which changes only when

predictors affect R2 above what would be expected by chance

Classification
Predict Yes Predict No

Actual Yes True Positive (1− β) False Negative (β)
Actual No False Positive (α) True Negative (1− α)

– Precision = TP
TP+FP

, percent correct when predict positive

– Recall, Sensitivity = TP
TP+FN

, percent of actual positives

identified correctly (True Positive Rate)
– Specificity = TN

TN+FP
, percent of actual negatives identified

correctly, also 1 - FPR (True Negative Rate)

– F1 = 2 precision·recall
precision+recall

, useful when classes are imbalanced

ROC Curve - plots TPR vs. FPR for every threshold α. Area
Under the Curve measures how likely the model differentiates
positives and negatives (perfect AUC = 1, baseline = 0.5).
Precision-Recall Curve - focuses on the correct prediction
of the minority class, useful when data is imbalanced

Linear Regression
Models linear relationships between a continuous response and
explanatory variables
Ordinary Least Squares - find β̂ for ŷ = β̂0 + β̂X + ε by
solving β̂ = (XTX)−1XTY which minimizes the SSE
Assumptions
– Linear relationship and independent observations
– Homoscedasticity - error terms have constant variance
– Errors are uncorrelated and normally distributed
– Low multicollinearity

Variance Inflation Factor - measures the severity of
multicollinearity → 1

1−Ri2
, where Ri

2 is found by regressing

Xi against all other variables (a common VIF cutoff is 10)
Regularization
Add a penalty λ for large coefficients to the cost function,
which reduces overfitting. Requires normalized data.
Subset (L0): λ||β̂||0 = λ(number of non−zero variables)
– Computationally slow, need to fit 2k models
– Alternatives: forward and backward stepwise selection

LASSO (L1): λ||β̂||1 = λ
∑
|β̂|

– Shrinks coefficients to zero, and is robust to outliers

Ridge (L2): λ||β̂||2 = λ
∑

(β̂)2

– Reduces effects of multicollinearity

Combining LASSO and Ridge gives Elastic Net

Logistic Regression
Predicts probability that y belongs to a binary class.
Estimates β through maximum likelihood estimation (MLE)
by fitting a logistic (sigmoid) function to the data. This is
equivalent to minimizing the cross entropy loss. Regularization
can be added in the exponent.

P (Y = 1) =
1

1 + e−(β0+βx)

The threshold a classifies predictions as either 1 or 0
Assumptions
– Linear relationship between X and log-odds of Y

– Independent observations

– Low multicollinearity

Odds - output probability can be transformed using

Odds(Y = 1) =
P (Y=1)

1−P (Y=1)
, where P ( 1

3
) = 1:2 odds

Coefficients are linearly related to odds, such that a one unit
increase in x1 affects odds by eβ1

Decision Trees
Classification and Regression Tree
CART for regression minimizes SSE by splitting data into
sub-regions and predicting the average value at leaf nodes.
The complexity parameter cp only keeps splits that reduce loss
by at least cp (small cp → deep tree)

CART for classification minimizes the sum of region impurity,
where p̂i is the probability of a sample being in category i.
Possible measures, each with a max impurity of 0.5.
– Gini Impurity = 1−

∑
(p̂i)

2

– Cross Entropy = −
∑

(p̂i)log2(p̂i)

At each leaf node, CART predicts the most frequent category,
assuming false negative and false positive costs are the same.
The splitting process handles multicollinearity and outliers.
Trees are prone to high variance, so tune through CV.

Random Forest
Trains an ensemble of trees that vote for the final prediction
Bootstrapping - sampling with replacement (will contain
duplicates), until the sample is as large as the training set
Bagging - training independent models on different subsets of
the data, which reduces variance. Each tree is trained on
∼63% of the data, so the out-of-bag 37% can estimate
prediction error without resorting to CV.
Deep trees may overfit, but adding more trees does not cause
overfitting. Model bias is always equal to one of its individual
trees.
Variable Importance - ranks variables by their ability to
minimize error when split upon, averaged across all trees
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.Support Vector Machines
Separates data between two classes by maximizing the margin
between the hyperplane and the nearest data points of any
class. Relies on the following:

Support Vector Classifiers - account for outliers through
the regularization parameter C, which penalizes
misclassifications in the margin by a factor of C > 0
Kernel Functions - solve nonlinear problems by computing
the similarity between points a, b and mapping the data to a
higher dimension. Common functions:
– Polynomial (ab+ r)d

– Radial e−γ(a−b)2 , where smaller γ → smoother boundaries

Hinge Loss - max(0, 1− yi(wT xi − b)), where w is the margin
width, b is the offset bias, and classes are labeled ±1. Acts as
the cost function for SVM. Note, even a correct prediction
inside the margin gives loss > 0.

Multiclass Prediction
To classify data with 3+ classes C, a common method is to
binarize the problem through:
– One vs. Rest - train a classifier for each class ci by setting
ci’s samples as 1 and all others as 0, and predict the class
with the highest confidence score

– One vs. One - train
C(C−1)

2
models for each pair of classes,

and predict the class with the highest number of positive
predictions

k-Nearest Neighbors
Non-parametric method that calculates ŷ using the average
value or most common class of its k-nearest points. For
high-dimensional data, information is lost through equidistant
vectors, so dimension reduction is often applied prior to k-NN.
Minkowski Distance = (

∑
|ai − bi|p)1/p

– p = 1 gives Manhattan distance
∑
|ai − bi|

– p = 2 gives Euclidean distance
√∑

(ai − bi)2

Hamming Distance - count of the differences between two
vectors, often used to compare categorical variables

.Clustering
Unsupervised, non-parametric methods that groups similar
data points together based on distance

k-Means
Randomly place k centroids across normalized data, and assig
observations to the nearest centroid. Recalculate centroids as
the mean of assignments and repeat until convergence. Using
the median or medoid (actual data point) may be more robust
to noise and outliers. k-modes is used for categorical data.
k-means++ - improves selection of initial clusters

1. Pick the first center randomly

2. Compute distance between points and the nearest center

3. Choose new center using a weighted probability
distribution proportional to distance

4. Repeat until k centers are chosen

Evaluating the number of clusters and performance:
Silhouette Value - measures how similar a data point is to
its own cluster compared to other clusters, and ranges from 1
(best) to -1 (worst).
Davies-Bouldin Index - ratio of within cluster scatter to
between cluster separation, where lower values are better

Hierarchical Clustering
Clusters data into groups using a predominant hierarchy
Agglomerative Approach

1. Each observation starts in its own cluster

2. Iteratively combine the most similar cluster pairs

3. Continue until all points are in the same cluster

Divisive Approach - all points start in one cluster and splits
are performed recursively down the hierarchy
Linkage Metrics - measure dissimilarity between clusters
and combines them using the minimum linkage value over all
pairwise points in different clusters by comparing:

– Single - the distance between the closest pair of points

– Complete - the distance between the farthest pair of points

– Ward’s - the increase in within-cluster SSE if two clusters
were to be combined

Dendrogram - plots the full hierarchy of clusters, where the
height of a node indicates the dissimilarity between its children

.Dimension Reduction
High-dimensional data can lead to the curse of dimensionality,
which increases the risk of overfitting and decreases the value
added. The number of samples for each feature combination
quickly becomes sparse, reducing model performance.

Principal Component Analysis
Projects data onto orthogonal vectors that maximize variance.
Remember, given an n× n matrix A, a nonzero vector ~x, and
a scaler λ, if A~x = λ~x then ~x and λ are an eigenvector and
eigenvalue of A. In PCA, the eigenvectors are uncorrelated
and represent principal components.

1. Start with the covariance matrix of standardized data
2. Calculate eigenvalues and eigenvectors using SVD or

eigendecomposition
3. Rank the principal components by their proportion of

variance explained = λi∑
λ

Data should be linearly related, and for a p-dimensional
dataset, there will be p principal components.
Note, PCA explains the variance in X, not necessarily Y.
Sparse PCA - constrains the number of non-zero values in
each component, reducing susceptibility to noise and
improving interpretability

Linear Discriminant Analysis
Supervised method that maximizes separation between classes
and minimizes variance within classes for a labeled dataset

1. Compute the mean and variance of each independent
variable for every class Ci

2. Calculate the within-class (σ2
w) and between-class (σ2

b )
variance

3. Find the matrix W = (σ2
w)−1(σ2

b ) that maximizes Fisher’s
signal-to-noise ratio

4. Rank the discriminant components by their signal-to-noise
ratio λ

Note, the number of components is at most C1 − 1
Assumptions

– Independent variables are normally distributed
– Homoscedasticity - constant variance of error
– Low multicollinearity

Factor Analysis
Describes data using a linear combination of k latent factors.
Given a normalized matrix X, it follows the form X = Lf + ε,
with factor loadings L and hidden factors f .

Scree Plot - graphs the eigenvalues of factors (or principal
components) and is used to determine the number of factors to
retain. The ’elbow’ where values level off is often used as the
cutoff.

Aaron Wang



.Natural Language Processing
Transforms human language into machine-usable code
Processing Techniques

– Tokenization - splits text into individual words (tokens)

– Lemmatization - reduces words to its base form based on
dictionary definition (am, are, is → be)

– Stemming - reduces words to its base form without context
(ended → end)

– Stop words - removes common and irrelevant words (the, is)

Markov Chain - stochastic and memoryless process that
predicts future events based only on the current state
n-gram - predicts the next term in a sequence of n terms
based on Markov chains
Bag-of-words - represents text using word frequencies,
without context or order
tf-idf - measures word importance for a document in a
collection (corpus), by multiplying the term frequency
(occurrences of a term in a document) with the inverse
document frequency (penalizes common terms across a corpus)
Cosine Similarity - measures similarity between vectors,
calculated as cos(θ) = A·B

||A||||B|| , which ranges from o to 1

Word Embedding
Maps words and phrases to numerical vectors
word2vec - trains iteratively over local word context
windows, places similar words close together, and embeds
sub-relationships directly into vectors, such that
king −man+ woman ≈ queen
Relies on one of the following:

– Continuous bag-of-words (CBOW) - predicts the word
given its context

– skip-gram - predicts the context given a word

GloVe - combines both global and local word co-occurence
data to learn word similarity
BERT - accounts for word order and trains on subwords, and
unlike word2vec and GloVe, BERT outputs different vectors
for different uses of words (cell phone vs. blood cell)

Sentiment Analysis
Extracts the attitudes and emotions from text
Polarity - measures positive, negative, or neutral opinions

– Valence shifters - capture amplifiers or negators such as
’really fun’ or ’hardly fun’

Sentiment - measures emotional states such as happy or sad
Subject-Object Identification - classifies sentences as
either subjective or objective

Topic Modelling
Captures the underlying themes that appear in documents
Latent Dirichlet Allocation (LDA) - generates k topics by
first assigning each word to a random topic, then iteratively
updating assignments based on parameters α, the mix of topics
per document, and β, the distribution of words per topic
Latent Semantic Analysis (LSA) - identifies patterns using
tf-idf scores and reduces data to k dimensions through SVD

.Neural Network
Feeds inputs through different hidden layers and relies on
weights and nonlinear functions to reach an output

Perceptron - the foundation of a neural network that
multiplies inputs by weights, adds bias, and feeds the result z
to an activation function
Activation Function - defines a node’s output

Sigmoid ReLU Tanh

1
1+e−z

max(0, z) ez−e−z
ez+e−z

Softmax - given final layer outputs, provides class
probabilities that sum to 1 → ezi∑

ez

If there is more than one ‘correct’ label, the sigmoid function
provides probabilities for all, some, or none of the labels.

Loss Function - measures prediction error using functions
such as MSE for regression and binary cross-entropy for
probability-based classification

Gradient Descent - minimizes the average loss by moving
iteratively in the direction of steepest descent, controlled by
the learning rate γ (step size). Note, γ can be updated
adaptively for better performance. For neural networks,
finding the best set of weights involves:

1. Initialize weights W randomly with near-zero values
2. Loop until convergence:

– Calculate the average network loss J(W )
– Backpropagation - iterate backwards from the last

layer, computing the gradient
∂J(W )
∂W

and updating the

weight W ←W − γ ∂J(W )
∂W

3. Return the minimum loss weight matrix W

To prevent overfitting, regularization can be applied by:

– Stopping training when validation performance drops
– Dropout - randomly drop some nodes during training to

prevent over-reliance on a single node
– Embedding weight penalties into the objective function
– Batch Normalization - stabilizes learning by normalizing

inputs to a layer

Stochastic Gradient Descent - only uses a single point to
compute gradients, leading to smoother convergence and faster
compute speeds. Alternatively, mini-batch gradient descent
trains on small subsets of the data, striking a balance between
the approaches.

.Convolutional Neural Network
Analyzes structural or visual data by extracting local features
Convolutional Layers - iterate over windows of the image,
applying weights, bias, and an activation function to create
feature maps. Different weights lead to different features maps.

Pooling - downsamples convolution layers to reduce
dimensionality and maintain spatial invariance, allowing
detection of features even if they have shifted slightly.
Common techniques return the max or average value in the
pooling window.

The general CNN architecture is as follows:

1. Perform a series of convolution, ReLU, and pooling
operations, extracting important features from the data

2. Feed output into a fully-connected layer for classification,
object detection, or other structural analyses

Recurrent Neural Network
Predicts sequential data using a temporally connected system
that captures both new inputs and previous outputs using
hidden states

RNNs can model various input-output scenarios, such as
many-to-one, one-to-many, and many-to-many. Relies on
parameter (weight) sharing for efficiency. To avoid redundant
calculations during backpropagation, downstream gradients
are found by chaining previous gradients. However, repeatedly
multiplying values greater than or less than 1 leads to:

– Exploding gradients - model instability and overflows

– Vanishing gradients - loss of learning ability

This can be solved using:

– Gradient clipping - cap the maximum value of gradients

– ReLU - its derivative prevents gradient shrinkage for x > 0

– Gated cells - regulate the flow of information

Long Short-Term Memory - learns long-term dependencies
using gated cells and maintains a separate cell state from what
is outputted. Gates in LSTM perform the following:

1. Forget and filter out irrelevant info from previous layers

2. Store relevant info from current input

3. Update the current cell state

4. Output the hidden state, a filtered version of the cell state

LSTMs can be stacked to improve performance.
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.
Boosting
Sequentially fits many simple models that account for the
previous model’s errors. As opposed to bagging, boosting
trains on all the data and combines models using the learning
rate α.

AdaBoost - uses sample weighting and decision ’stumps’
(one-level decision trees) to classify samples

1. Build decision stumps for every feature, choosing the one
with the best classification accuracy

2. Assign more weight to misclassified samples and reward
trees that differentiate them, where α = 1

2
ln 1−TotalError

TotalError
3. Continue training and weighting decision stumps until

convergence

Gradient Boost - trains sequential models by minimizing a
given loss function using gradient descent at each step

1. Start by predicting the average value of the response

2. Build a tree on the errors, constrained by depth or the
number of leaf nodes

3. Scale decision trees by a constant learning rate α

4. Continue training and weighting decision trees until
convergence

XGBoost - fast gradient boosting method that utilizes
regularization and parallelization

Recommender Systems
Suggests relevant items to users by predicting ratings and
preferences, and is divided into two main types:

– Content Filtering - recommends similar items

– Collaborative Filtering - recommends what similar users like

The latter is more common, and includes methods such as:
Memory-based Approaches - finds neighborhoods by using
rating data to compute user and item similarity, measured
using correlation or cosine similarity

– User-User - similar users also liked...

– Leads to more diverse recommendations, as opposed to
just recommending popular items

– Suffers from sparsity, as the number of users who rate
items is often low

– Item-Item - similar users who liked this item also liked...

– Efficient when there are more users than items, since the
item neighborhoods update less frequently than users

– Similarity between items is often more reliable than
similarity between users

Model-based Approaches - predict ratings of unrated
items, through methods such as Bayesian networks, SVD, and
clustering. Handles sparse data better than memory-based
approaches.

– Matrix Factorization - decomposes the user-item rating
matrix into two lower-dimensional matrices representing the
users and items, each with k latent factors

Recommender systems can also be combined through ensemble
methods to improve performance.

.
Reinforcement Learning
Maximizes future rewards by learning through state-action
pairs. That is, an agent performs actions in an environment,
which updates the state and provides a reward.

Multi-armed Bandit Problem - a gambler plays slot
machines with unknown probability distributions and must
decide the best strategy to maximize reward. This exemplifies
the exploration-exploitation tradeoff, as the best long-term
strategy may involve short-term sacrifices.

RL is divided into two types, with the former being more
common:

– Model-free - learn through trial and error in the
environment

– Model-based - access to the underlying (approximate)
state-reward distribution

Q-Value Q(s, a) - captures the expected discounted total
future reward given a state and action
Policy - chooses the best actions for an agent at various states
π(s) = arg max

a
Q(s, a)

Deep RL algorithms can further be divided into two main
types, depending on their learning objective
Value Learning - aims to approximate Q(s, a) for all actions
the agent can take, but is restricted to discrete action spaces.
Can use the ε-greedy method, where ε measures the
probability of exploration. If chosen, the next action is
selected uniformly at random.

– Q-Learning - simple value iteration model that maximizes
the Q-value using a table on states and actions

– Deep Q Network - finds the best action to take by
minimizing the Q-loss, the squared error between the target
Q-value and the prediction

Policy Gradient Learning - directly optimize the the policy
π(s) through a probability distribution of actions, without the
need for a value function, allowing for continuous action
spaces.

Actor-Critic Model - hybrid algorithm that relies on two
neural networks, an actor π(s, a, θ) which controls agent
behavior and a critic Q(s, a, w) that measures how good an
action is. Both run in parallel to find the optimal weights θ, w
to maximize expected reward. At each step:

1. Pass the current state into the actor and critic

2. The critic evaluates the action’s Q-value, and the actor
updates its weight θ

3. The actor takes the next action leading to a new state, and
the critic updates its weight w

.
Anomaly Detection
Identifies unusual patterns that differ from the majority of the
data. Assumes that anomalies are:

– Rare - the minority class that occurs rarely in the data
– Different - have feature values that are very different from

normal observations

Anomaly detection techniques spans a wide range, including
methods based on:
Statistics - relies on various statistical methods to identify
outliers, such as Z-tests, boxplots, interquartile ranges, and
variance comparisons
Density - useful when data is grouped around dense
neighborhoods, measured by distance. Methods include
k-nearest neighbors, local outlier factor, and isolation forest.

– Isolation Forest - tree-based model that labels outliers
based on an anomaly score
1. Select a random feature and split value, dividing the

dataset in two
2. Continue splitting randomly until every point is isolated
3. Calculate the anomaly score for each observation, based

on how many iterations it took to isolate that point.
4. If the anomaly score is greater than a threshold, mark it

as an outlier
Intuitively, outliers are easier to isolate and should have
shorter path lengths in the tree

Clusters - data points outside of clusters could potentially be
marked as anomalies

Autoencoders - unsupervised neural networks that compress
data through an encoder and reconstruct it using a decoder.
Autoencoders do not reconstruct the data perfectly, but rather
focus on capturing important features in the data.

The decoder struggles to capture anomalous patterns, and the
reconstruction error acts as a score to detect anomalies.

Autoencoders can also be used for image processing, dimension
reduction, and information retrieval.

Hidden Markov Model - uses observed events O to model a
set of n underlying states Q using λ = (A,B, π)

– A - n× n matrix of transition probabilities from state i to j
– B - sequence of likelihoods of emitting ot in state i
– π - initial probability distribution over states

HMMs can calculate P (O|λ), find the best hidden state
sequence Q, or learn the parameters A and B. Anomalies are
observations that are unlikely to occur across states.

HMMs can be applied to many problems such as signal
processing and part of speech tagging.
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.Time Series
Extracts characteristics from time-sequenced data, which may
exhibit the following characteristics:

– Stationarity - statistical properties such as mean, variance,
and auto correlation are constant over time

– Trend - long-term rise or fall in values

– Seasonality - variations associated with specific calendar
times, occurring at regular intervals less than a year

– Cyclicality - variations without a fixed time length,
occurring in periods of greater or less than one year

– Autocorrelation - degree of linear similarity between
current and lagged values

CV must account for the time aspect, such as for each fold Fx:

– Sliding Window - train F1, test F2, then train F2, test F3

– Forward Chain - train F1, test F2, then train F1, F2, test F3

Exponential Smoothing - uses an exponentially decreasing
weight to observations over time, and takes a moving average.
The time t output is st = αxt + (1−α)st−1, where 0 < α < 1.

Double Exponential Smoothing - applies a recursive
exponential filter to capture trends within a time series

st = αxt + (1− α)(st−1 + bt−1)
bt = β(st − st−1) + (1− β)bt−1

Triple exponential smoothing adds a third variable γ that
accounts for seasonality.

ARIMA - models time series using three parameters (p, d, q):

– Autoregressive - the past p values affect the next value

– Integrated - values are replaced with the difference between
current and previous values, using the difference degree d (0
for stationary data, and 1 for non-stationary)

– Moving Average - the number of lagged forecast errors and
the size of the moving average window q

SARIMA - models seasonality through four additional
seasonality-specific parameters: P , D, Q, and the season
length s

Prophet - additive model that uses non-linear trends to
account for multiple seasonalities such as yearly, weekly, and
daily. Robust to missing data and handles outliers well.
Can be represented as: y(t) = g(t) + s(t) + h(t) + ε(t), with
four distinct components for the growth over time, seasonality,
holiday effects, and error. This specification is similar to a
generalized additive model.

Generalized Additive Model - combine predictive methods
while preserving additivity across variables, in a form such as
y = β0 + f1(x1) + · · ·+ fm(xm), where functions can be
non-linear. GAMs also provide regularized and interpretable
solutions for regression and classification problems.

Naive Bayes
Classifies data using the label with the highest conditional
probability, given data a and classes c. Naive because it
assumes variables are independent.

Bayes’ Theorem P (ci|a) =
P (a|ci)P (ci)

P (a)

Gaussian Naive Bayes - calculates conditional probability
for continuous data by assuming a normal distribution

.Statistics
p-value - probability that an effect could have occurred by
chance. If less than the significance level α, or if the test
statistic is greater than the critical value, then reject the null.
Type I Error (False Positive α) - rejecting a true null
Type II Error (False Negative β) - not rejecting a false null
Decreasing Type I Error causes an increase in Type II Error
Confidence Level (1 - α) - probability of finding an effect
that did not occur by chance and avoiding a Type I error
Power (1 - β) - probability of picking up on an effect that is
present and avoiding a Type II Error
Confidence Interval - estimated interval that models the
long-term frequency of capturing the true parameter value
z-test - tests whether normally distributed population means
are different, used when n is large and variances are known

– z-score - the number of standard deviations between a data
point x and the mean → x−µ

σ
t-test - used when population variances are unknown, and
converges to the z-test when n is large

– t-score - uses the standard error as an estimate for
population variance → x−µ

s/
√
n

Degrees of Freedom - the number of independent (free)
dimensions needed before the parameter estimate can be
determined
Chi-Square Tests - measure differences between categorical
variables, using χ2 =

∑ observed−expected
expected

to test:

– Goodness of fit - if samples of one categorical variable
match the population category expectations

– Independence - if being in one category is independent of
another, based off two categories

– Homogeneity - if different subgroups come from the same
population, based off a single category

ANOVA - analysis of variance, used to compare 3+ samples

– F-score - compares the ratio of explained and unexplained
variance → between group variance

within group variance

Conditional Probability P (A | B) =
P (A∩B)
P (B)

If A and B are independent, then P (A ∩B) = P (A)P (B).
Note, events that are independent of themselves must have
probability either 1 or 0.
Union P (A ∪B) = P (A) + P (B)− P (A ∩B)
Mutually Exclusive - events cannot happen simultaneously

Expected Value E[X] =
∑
xipi, with properties

– E[X + Y ] = E[X] + E[Y ]
– E[XY ] = E[X]E[Y ] if X and Y are independent

Variance Var(X) = E[X2]− E[X]2, with properties

– Var(X ± Y ) = Var(X)+Var(Y )± 2Cov(X,Y )
– Var(aX ± b) = a2Var(X)

Covariance - measures the direction of the joint linear

relationship of two variables →
∑

(xi−x̄)(yi−ȳ)
n−1

Correlation - normalizes covariance to provide both strength

and direction of linear relationships → r =
Cov(x,y)
σxσy

Independent variables are uncorrelated, though the inverse is
not necessarily true

A/B Testing
Examines user experience through randomized tests with two
variants. The typical steps are:

1. Determine the evaluation metric and experiment goals

2. Select a significance level α and power threshold 1 - β

3. Calculate the required sample size per variation

4. Randomly assign users into control and treatment groups

5. Measure and analyze results using the appropriate test

The required sample size depends on α, β, and the MDE
Minimum Detectable Effect - the target relative minimum
increase over the baseline that should be observed from a test

Overall Evaluation Criterion - quantitative measure of the
test’s objective, commonly used when short and long-term
metrics have inverse relationships

Multivariate Testing - compares 3+ variants or
combinations, but requires larger sample sizes
Bonferroni Correction - when conducting n tests, run each
test at the α

n
significance level, which lowers the false positive

rate of finding effects by chance

Network Effects - changes that occur due to effect spillover
from other groups. To detect group interference:

1. Split the population into distinct clusters

2. Randomly assign half the clusters to the control and
treatment groups A1 and B1

3. Randomize the other half at the user-level and assign to
control and treatment groups A2 and B2

4. Intuitively, if there are network effects, then the tests will
have different results

To account for network effects, randomize users based on time,
cluster, or location

Sequential Testing - allows for early experiment stopping by
drawing statistical borders based on the Type I Error rate. If
the effect reaches a border, the test can be stopped. Used to
combat peeking (preliminarily checking results of a test),
which can inflate p-values and lead to incorrect conclusions.
Cohort Analysis - examines specific groups of users based on
behavior or time and can help identify whether novelty or
primacy effects are present

Miscellaneous
Shapley Values - measures the marginal contribution of each
variable in the output of a model, where the sum of all Shapley
values equals the total value (prediction − mean prediction)
SHAP - interpretable Shapley method that utilizes both
global and local importance to model variable explainability
Permutation - order matters → n!

(n−k)!
= nPk

Combination - order doesn’t matter
→ n!

k!(n−k)!
= nCk =

(n
k

)
Left Skew - Mean < Median ≤ Mode
Right Skew - Mean > Median ≥ Mode
Probability vs Likelihood - given a situation θ and
observed outcomes O, probability is calculated as P (O|θ).
However, when true values for θ are unknown, O is used to
estimate the θ that maximizes the likelihood function. That is,
L(θ|O) = P (O|θ).

Aaron Wang
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